Dynamic responses of tree-ring growth to multiple dimensions of drought

Shan Gao¹,²,³ | Ruishun Liu⁴ | Tao Zhou¹,² | Wei Fang³ | Chuixiang Yi³,⁵ | Ruijie Lu¹ | Xiang Zhao⁶ | Hui Luo¹,²

¹State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
²Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing, China
³School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York
⁴College of Resources and Environment, Northwest A&F University, Yangling, China
⁵Earth and Environmental Sciences Department, the Graduate Center of the City University of New York, New York City, New York
⁶State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences, Beijing, China

Correspondence
Tao Zhou, State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China. Email: tzhou@bnu.edu.cn

Funding Information
National Natural Science Foundation of China, Grant/Award Number: 41571185, 41621061; Fundamental Research Funds for the Central University, Grant/Award Number: 2015KJJCBB33; China Scholarship Council; City University of New York, Grant/Award Number: PSC-CUNY ENHC-48-33, PSC-CUNY CIRG-80209-08 22

Abstract
Droughts, which are characterized by multiple dimensions including frequency, duration, severity, and onset timing, can impact tree stem radial growth profoundly. Different dimensions of drought influence tree stem radial growth independently or jointly, which makes the development of accurate predictions a formidable challenge. Measurement-based tree-ring data have obvious advantages for studying the drought responses of trees. Here, we explored the use of abundant tree-ring records for quantifying regional response patterns to key dimensions of drought. Specifically, we designed a series of regional-scaled “natural experiments,” based on 357 tree-ring chronologies from Southwest USA and location-matched monthly water balance anomalies, to reveal how tree-ring responds to each dimension of drought. Our results showed that tree-ring was affected significantly more by the water balance condition in the current hydrological year than that in the prior hydrological year. Within the current hydrological year, increased drought frequency (number of dry months) and duration (maximum number of consecutive dry months) resulted in “cumulative effects” which amplified the impacts of drought on trees and reduced the drought resistance of trees. Drought events that occurred in the pregrowing seasons strongly affected subsequent tree stem radial growth. Both the onset timing and severity of drought increased “legacy effects” on tree stem radial growth, which reduced the drought resilience of trees. These results indicated that the drought impact on trees is a dynamic process: even when the total water deficits are the same, differences among the drought processes could lead to considerably different responses from trees. This study thus provides a conceptual framework and probabilistic patterns of tree-ring growth response to multiple dimensions of drought regimes, which in turn may have a wide range of implications for predictions, uncertainty assessment, and forest management.

Keywords
cumulative effect, drought dimensions, legacy effect, probabilistic patterns of tree growth, response to drought process, tree-ring, water balance

1 INTRODUCTION
Drought is one of the most economically and ecologically disruptive extreme events, one that impacts terrestrial ecosystem processes profoundly especially under the current warming climate (Allen, Breshears, & McDowell, 2015; Anderegg et al., 2015, 2016; Choat et al., 2012; Cook, Ault, & Smerdon, 2015; Yi et al., 2012). Higher air
temperature causes a greater atmospheric demand for water, which exacerbates the water stress upon vegetation during a drought (Novick et al., 2016). Among all vegetation types, forests are potentially the most susceptible to drought based on the hydraulic corollary of vascular plant physiology (McDowell & Allen, 2015). Increasing focus has been placed on widespread drought-induced tree mortality and forest declines that cause a significant reduction in carbon flux from the atmosphere to the land (Wei, Yi, Fang, & Hendrey, 2017; Yi, Pendall, & Ciais, 2015; Yi et al., 2010), which have been investigated from diverse perspectives and on different scales using a wide variety of approaches (Adams et al., 2009; Allen et al., 2015; Barbeta et al., 2015; Bhuyan, Zang, Vicente-Serrano, & Menzel, 2017; Dobbertin, 2005; Dorman, Svoray, Pervolotsky, & Sarris, 2013; González-Cáseras, Pompa-García, & Camarero, 2017; He et al., 2017; Huang et al., 2015; Luo et al., 2018; Xu et al., 2018; Yi et al., 2018). However, detailed and locally specific conclusions and hypothetical mechanisms derived from in situ experiments or event-based observations are difficult to be applied at the regional to global scales, while regional- to global-scaled studies tend to simplify or abstract the processes of climate-vegetation interplay, which may cause uncertainties or even paradoxes. These hold back the development of process-based models and leave unclear the dynamic patterns of forest responses to drought and their underlying mechanisms.

Drought is a multiscalar phenomenon and thus it is difficult to be quantified (McKee, Doesken, & Kleist, 1993; Vicente-Serrano et al., 2013; Wei et al., 2014; Zargar, Sadiq, Naser, & Khan, 2011). Multiple dimensions, namely severity, frequency, duration, timing, and geographic extent have been used to characterize drought (Zargar et al., 2011), and each dimension could plausibly affect tree stem radial growth to some extent. Drought has been predicted to be longer, more frequent, more severe and more seasonal during ongoing global climate change (Cook et al., 2015; Halwatura, Lechner, & Arnold, 2015; Spinoni, Naumann, Carrao, Barbosa, & Vogt, 2014; Yi et al., 2015). It is therefore urgent that we quantify how tree stem radial growth respond dynamically to each dimension of drought, so that more accurate modeling and predictions could be developed.

It is crucial but challenging to quantify the impact of each dimension of drought on trees. Observations give an overall picture of the patterns of forests respond to drought dimensions (Allen et al., 2010, 2015). Extreme droughts affect trees’ vigor and structure considerably (Rosbakh et al., 2017). In addition to these immediate impacts, their long-lasting legacy effects could delay trees’ recovery, and increase vulnerability to future droughts (Anderegg et al., 2013, 2015; Wu et al., 2017). Increase of drought frequency exposes trees to drought more frequently, which may augment the risk of forest die-off (Mueller et al., 2005). Droughts with longer duration could cause accumulated hydraulic deterioration, which may lead to mortality. In situ controlled experiments provide insight into the physiological mechanisms of tree responses to drought; we could monitor selected physiological indicators of saplings for their changes over time under the controlled water stress conditions (Anderegg & Anderegg, 2012; Barbeta et al., 2015; Dítmaro, Kurjak, Palmroth, Kmet, & Strelcová, 2009; Ryan, 2011). However, varied responses were reported among saplings (Ambrose et al., 2015; Rosbakh et al., 2017; Ryan, 2011), which attest to the difficulty in predicting individual drought responses. Moreover, the disparate physiological responses to drought between saplings and mature trees (Anderegg & Anderegg, 2012; Bennett, McDowell, Allen, & Anderson-Teixeira, 2015), in addition to limited specimens and experimental durations, make it difficult to generate regional-scaled predictions.

In regional- to global-scaled studies, drought indices are preferred for characterizing drought since they are readily usable numerical values that are calculated by assimilating drought indicators (McKee et al., 1993; Vicente-Serrano, Beguería, & López-Moreno, 2010; Zargar et al., 2011; Zhou, Yi, Bakwin, & Zhu, 2008). Correlation and regression analyses between drought indices and indicators of forest vitality or tree growth have been the most common methods used to date in exploring how forests respond to drought (Breshears et al., 2005; Vicente-Serrano et al., 2013) and other important topics such as the dominant timescales (Andujar, Krakauer, Yi, & Kogan, 2017; Vicente-Serrano, Camarero, & Azorín-Molina, 2014; Vicente-Serrano et al., 2013), biome sensitivities (González-Cáseres et al., 2017), time-lag effects (Wu et al., 2015), while consensus was rarely achieved. Although severity of drought has received the most attention among all drought dimensions in such analyses, it is worth noting that drought is a process. A complete process contains extensive and complex information that goes beyond a single value. Therefore, more detailed process-based research is needed at the regional scale.

In this study, we sought to clarify how tree stem radial growth responds to each dimension of drought by designing a series of regional-scaled “natural experiments” based on 357 tree-ring chronologies from southwestern USA and location-matched monthly water balance anomalies. Southwest USA is an ideal region for drought related research. Ring width indices (RWI) were used to indicate tree stem radial growth while monthly water balance anomalies were used to quantify the key dimensions of drought. Specifically, we reassembled tree-ring specimens based on a series of drought scenarios with chosen drought dimensions and the corresponding patterns of tree-ring growth were analyzed. The contrasting distribution patterns of RWIs under different drought scenarios should shed new light on our understanding of drought regimes at the regional scale.

MATERIALS AND METHODS

2.1 Study region

The study region, located in the southwest of United States, includes the states of Utah, Colorado, Arizona and New Mexico (Figure 1). The topography is mainly comprised of the Colorado Plateau, which is surrounded by mountains and deserts. The climate of the region depends mainly on elevation and topography, therefore has large spatial gradients in both temperature and precipitation (Allen, Betancourt, & Swetnam, 1998; Biederman et al., 2017); low elevation is
arid desert climate, while higher elevations feature alpine climates and have large tracts of alpine trees. Southwest USA is a typical region for researching tree-ring response to drought since forests there are mainly limited by water deficits.

2.2 | Tree-ring data

A total of 357 tree-ring chronologies of three major tree species (*Pseudotsuga menziesii*, *Pinus ponderosa*, *Pinus edulis*) were obtained from the International Tree-Ring Data Bank (https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring; Table 1). These trees were mainly distributed at the elevation range of 1,300–3,200 m. Tree-ring growth patterns across species and space are generally coherence (Williams et al., 2012). Standard chronologies were obtained directly from the International Tree-Ring Data Bank or developed from raw tree-ring width when they were unavailable. To develop standard chronologies, long-term trends caused by aging and increasing trunk diameter were removed mostly by negative exponential curves using ARSTAN program (Cook, 1985). After standardization, all chronologies were scaled to a standard mean (RWI = 1,000) and comparable variance, therefore spatial heterogeneities among tree-ring sites were largely eliminated. Processed chronologies after the year 1902 were selected for further analyses.

2.3 | Climate data

Monthly gridded climate data (precipitation [P] and potential evapotranspiration [PET]) from 1901 to 2013 for each tree-ring site were obtained from the Climate Research Unit, TS v.4.01 (https://crudata.uea.ac.uk/cru/data/hrg/). We calculated the monthly water balance (D_m) of each site (Equation 1) and its annual water balance (D_y) (Equation 2). In this research, hydrological year—beginning in October of the previous year and ending in September of the current year—was used (Fang, Frank, Zhao, Zhou, & Seppa, 2015; Salzer & Kipfmueller, 2005; Williams, Michaelsen, Leavitt, & Still, 2010) to obtain a more reasonable correspondence between hydrological processes and tree phenology. To explore how water balance variability controls tree-ring growth, we used monthly and annual water balance anomalies (respectively, D_manomaly and D_yanomaly), which were calculated by Equations 3 and 4. Water balance anomalies described the departure from a long-term average, which effectively normalizes the data, thus enabling more meaningful comparisons to be made with respect to normality, both for different sites within a region and different periods within a hydrological year.

For the ith month of a hydrological year at the jth tree-ring site, D_m represents 113-hydrological year-mean (from year 1901 to 2013) water balance for ith month at jth site.

2.4 | Dimensions of droughts

Drought can be characterized by multiple dimensions, that include its severity, duration, frequency, and timing (Zargar et al., 2011). In our study, we used monthly water balance anomaly condition to quantify each dimension of droughts.

Severity: Monthly water balance anomaly (D_manomaly) equal to or below a drought threshold.

Frequency: Number of months within a hydrological year (i.e., from October of the previous to September of the current year) that have a monthly water balance anomaly below a threshold.

Duration: Number of consecutive months within a hydrological year that monthly water balance anomaly below a certain severity.

Timing: Onset time of drought within a hydrological year.

FIGURE 1 Distribution of tree-ring sites used in Southwest USA. A total of 357 tree-ring sites of three major tree species (*Pseudotsuga menziesii*, *Pinus ponderosa*, *Pinus edulis*) were included.
We defined three levels of monthly drought severity: SI ($D_{\text{manomaly}} \leq 0$), SII ($D_{\text{manomaly}} \leq -10 \text{ mm/month}$), and SIII ($D_{\text{manomaly}} \leq -20 \text{ mm/month}$). To determine these thresholds more objectively, we set the accumulated annual water balance threshold every 20 mm and plotted the averaged RWI formed below each threshold (Figure 2). When the water balance threshold was approximately 240 mm/year, the changed rates of averaged RWI slowed down; therefore, the strongest severity we set was below 20 mm/month, while the weakest was set to below 0 mm/month, which we considered as under the normal condition for tree-ring growth in this region.

2.5 Natural experiments using existing tree-ring dataset

Our tree-ring database was formed with 357 standard chronologies from year 1902 to 2012, resulting in a total of 29,969 site-years. Each site-year was considered as an individual specimen impacted by the water balance condition. To better illustrate how different dimensions of drought may impact tree-ring growth, we first set up hypothetical water balance conditions, and then picked out RWI specimens from the database formed according to the accumulated conditions, so that the most likely characteristics of RWI distribution for the study region could be revealed.

To examine whether droughts in previous hydrological year have strong legacy effects on RWIs of current year and to compare the effects of droughts in current and in previous hydrological years on tree growth, we designed two major drought scenarios. In the first scenario, we only controlled the drought conditions of current hydrological year, keeping them equivalent (Figure 3a). In the second scenario, we only controlled previous hydrological year drought conditions, keeping them equivalent (Figure 3b). Episodes of drought were subdivided into three severities whose annual water balance anomalies were below 0, −120, −240 mm, respectively. The distributions of RWI specimens formed under those drought scenarios were presented, independent sample t tests were conducted to test significant differences.

To examine how drought frequency affects tree stem radial growth, we first counted the number of months whose D_{manomaly} was below a certain severity for each site-year, and then RWI specimens under the same drought frequencies were grouped, averaged, and compared (Figure 4).

To examine how drought duration affects tree stem radial growth, we first grouped RWI specimens according to certain drought frequencies, and then grouped them according to continuous drought durations with fixed frequencies (Figure 5a,b). Independent sample t tests were conducted to test significant differences among groups.

To examine how drought onset timing affects tree stem radial growth, two drought scenarios were designed: one with continuous drought that mainly occurred between October of the previous year and March of the current year (i.e., the pre-growing season; Figure 6a); the other with continuous drought that mainly occurred between April and September of the current year (i.e., growing season) (Figure 6b). RWI specimens under those two drought scenarios were grouped, averaged, and compared using independent sample t tests.

3 RESULTS

3.1 Are there interannual drought legacy effects on RWI specimens?

Droughts of current hydrological year had significant impacts on RWIs, as drought severity increased, the impacts on RWIs strengthened. Under the three increased drought severity conditions, the regional mean RWI decreased from 1,033 to 887, 710, and 505,
respectively (Figure 3c). Compared to the impacts on RWIs from current hydrological years, previous hydrological year drought apparently had smaller impacts, and an increase in drought severity did not make much differences, as the regional mean RWI varied around 1,000 at no more than 50 above and below that value (Figure 3d).

3.2 How does drought frequency in different severities affect tree-ring growth?

Ring width indices specimens formed under the same drought frequency condition in SI severity condition were grouped and presented (Figure 4a). Regional mean RWI generally decreased with an increase of drought frequency within a hydrological year. As droughts occurred for more than 7 months within a hydrological year, regional mean RWI started to drop below the standard mean (RWI = 1,000) and as droughts occurred for more than 9 months within a hydrological year, the missing rings (RWI = 0) appeared more regularly.

Severity of drought amplified the effect of drought frequency on RWI specimens. Droughts with high frequency but low severity could have similar effects on RWIs as droughts with low frequency but high severity. For example, a RWI mean of c. 1,000 could be formed under a 7-month/year frequency in SI severity droughts, but for SII severity droughts it only required a 5-month/year frequency; similarly, for SIII severity droughts only 3-month/year frequency was needed (Figure 4b).

3.3 How does drought duration affect tree-ring growth?

We compared the effects of continuous droughts and random droughts on RWIs (Figure 5a,b). Given the same drought frequency (number of dry months of the hydrological year), RWIs that formed under continuous droughts (indicated by the dashed lines) were generally lower than those formed under random droughts (indicated by the solid lines). This suggested that continuous droughts tend to have a stronger impact on RWIs. Weaker droughts of longer duration could have a similar impact on RWIs as stronger droughts do. For instance, under a 7-month/year drought frequency condition, continuous SI droughts resulted in a regional mean RWI of 820,
similar to that of random SII droughts (RWI = 826; Figure 5d), despite the mean D_{a} anomaly of random SII droughts (orange dashed line) being 102 mm lower than that of continuous SI droughts (black dashed line, Figure 5c). Under the same drought frequency condition, as drought severity became stronger, the difference between the effects of continuous droughts (dashed lines in Figure 5b) and random droughts (solid lines in Figure 5b) on RWIs gradually dissipated, which points to legacy effects.

3.4 How does the timing of drought affect tree-ring growth?

To examine how timing of drought may affect regional RWIs, we designed two hypothetical intra-annual water balance conditions: continuous droughts mainly occurred in pregrowing season (Figure 6a) or in growing season (Figure 6b). RWI specimens were reassembled accordingly under both scenarios. Although the mean D_{a} anomaly of pregrowing season droughts was comparable to those of growing season droughts (blue vs. orange dashed lines in Figure 6c,e,g), the adverse impact of pregrowing season droughts on RWIs was much larger than the impact of growing season droughts (blue vs. orange dashed lines in Figure 6d). This disparity increased with greater drought severity—regional mean RWI decreased from 642 under SI droughts to 397 under SII droughts and 311 under SIII droughts (Figure 6f,h)—while for growing season droughts, increase of severity of droughts had little impacts on regional mean RWI (Figure 6d,f,h).

4 DISCUSSION

4.1 Tree stem radial growth responses to drought dimensions

Having drought in the hydrological years immediately prior to the current ones exerted certain impacts on tree-ring growth of the current year. Our results showed that regional mean RWI was reduced from an average of 1,033 to 970 (Figure 3d), which is comparable to the studies of interannual legacy effects from Anderegg et al. (2015) and Wu et al. (2017). Previous studies reported that correlations between vegetation indices (e.g., RWI, NDVI) and drought indices (e.g., SPEI) were tested significant at a timescale over 24 months (Li et al., 2015; Luo et al., 2018; Vicente-Serrano et al., 2014). Nevertheless, even when the previous hydrological year was under extreme drought conditions, its impact on current year RWIs were much less than the impact from drought in the current hydrological year (Figure 3c). This result underscores the critical importance of the current year’s water balance condition on tree stem radial growth.

Within a hydrological year, drought legacies of the pregrowing seasons had significantly higher impacts on current year RWI formation than that of the growing seasons, and these legacy effects increased with an increasing drought severity (Figure 6). This result, echoing previous studies, suggests that tree-ring width is primarily determined by the water condition of pregrowing season (Barnes et al., 2016; Fang et al., 2015; Hagedorn et al., 2014; Rigling, Bräker, Schnetter, & Schweingruber, 2002). We speculate that if there is enough water accumulation in the pregrowing season, a tree can effectively turn stored nonstructural carbon (NSC) into new tissue when reaching the suitable temperature for growth, therefore, wider early wood could be formed; otherwise the NSC would be consumed. Studies on seasonal wood formation showed that early wood width was positively correlated with precipitation from the previous winter and current spring to early summer, which could affect late wood formation and make the early wood more sensitive than late wood to drought (Julio Camarero, Miguel Olano, & Parras, 2010; Pasho, Julio Camarero, & Vicente-Serrano, 2012)—this is consistent with our speculation. Early wood is generally wider and brighter than late wood, which likely means wider ring widths, and so pregrowing season droughts could have larger impacts on tree-ring formation. Here, we also want to emphasize that the relatively small impacts of growing season droughts on tree-ring width do not necessarily mean that growing season droughts have less impact on tree physiology.

Our result also showed that as drought severity increased, the impact of drought duration became harder to be detected.
Drought severity could influence trees’ physiological responses (Ryan, 2011), as many physiological indicators respond to severe drought but not mild drought events (Ditmara et al., 2009; Roushbak et al., 2017). After experiencing an extreme drought event, trees may enter a malfunctioned state and need more time and water accumulation to adjust and recover (Pan, Yuan, & Wood, 2013) from legacy effects, thus losing their sensitivity to droughts of longer duration.

Legacy effects of trees responses to drought have been found to vary significantly at the global scale, some studies reported that forest ecosystems did not show apparent legacy effects or legacy effects <3 months (Wu et al., 2015), some reported around 5 months (Luo et al., 2016), some reported 8–10 months in semiarid and subhumid regions and shorter in arid and humid regions (Vicente-Serrano et al., 2013), some reported over 24 months (Li et al., 2015; Luo et al., 2018; Vicente-Serrano et al., 2014; Wu et al., 2017). These discrepancies were then attributed to diverse climate characteristics and forest types. Yet most of those reported results were processed using correlation methodology, in which drought legacy effects were considered constant on a fixed timescale (Mitchell et al., 2016). In our research, we did not address the exact timescale of the drought legacy effect, but we did show that legacy effects could be largely influenced by both the onset timing and severity of drought. Therefore, drought legacy effects should be considered as a dynamic process in further studies.

As drought frequency or duration increased within a hydrological year, repeated or continuous mild droughts could have similar impacts on tree stem radial growth with severe droughts (Figures 4b and 5b). This suggested that increasing the drought frequency and duration could result in “cumulative effects” which would reduce trees’ resistance, thus amplifying the impacts of drought on trees.

Previous observations and experiments have showed that prolonged drought gradually pushed trees to a more vulnerable state and, when increased in frequency, exposed the trees to a higher probability of mortality (Adams et al., 2009; Allen et al., 2015; Mueller et al., 2005). Conceptual frameworks for investigating cumulative effects exist and these are well accepted (Allen et al., 2015; McDowell et al., 2011; Mitchell et al., 2016); this study contributes to this topic further by describing such cumulative effects in a relatively clear, quantitative way.

The interplay of multiple dimensions of drought has made the impacts of drought on trees extremely complex and difficult to model and predict accurately. Even if the total water deficits are the same, difference among drought processes could result in considerably different responses from the affected trees. These results help us to reconsider the validity and rationality of building climate–growth relationships by pure statistics alone and using these relationships to reconstruct and predict drought events and impacts (Fang et al., 2015; Mitchell et al., 2016; Sheppard et al., 2004).

Drought indices have been widely used to simplify the drought process, and they are efficient tools for communicating drought levels among involved entities (Zargar et al., 2011), but we should be aware that such simplifications could also introduce uncertainties and bias. Coupling the drought process with tree physiology and phenology would significantly improve our ability of predicting resulting complex phenomena, such as drought-induced tree mortality and forest dieback.

4.2 | The evaluation for designing natural experiments

Regional-scaled “natural experiments” offer a straightforward and transparent method to explore regional response of trees to climate variability, and they have the potential to allow for more detailed...
analyses (such as interspecies comparisons) when data are abundant. Inspired by the experimental approach with clear control and randomized design, natural experiments are observational studies with ad hoc designs. Full spectrum of spatial and temporal dynamics in natural condition resembles a complete randomized exposure, while the ad hoc designs of drought scenarios allow us to test the effect of the focal factor while controlling other factors (Dunning, 2008; Petticrew et al., 2005; Rutter, 2007). In our case, the normalized tree-ring data (RWIs) was the dependent variable and the water balance condition was the independent factor that we could control with ad hoc design.

Tree-rings, formed under a variable climate, are suitable for discerning the impacts of drought process since they are direct measures of stem growth and have both advantages of data availability and continuity, spatially and temporally. Hence, using tree-rings to conduct regional-scaled “natural experiments” could generate tenable results. Nevertheless, the accuracy of this approach will be affected by the quantity and distribution of tree-ring sites. Therefore, on the basis of existing International Tree Ring Data Bank (ITRDB), updated regularly, adding new sites to develop a more evenly distributed network could improve our ability to conduct regional- to global-scale explorations.

Southwest USA is an ideal region for investigating how tree stem radial growth responds to drought process, not only because of its densely distributed tree-ring sites, but also owing to its characteristic intra-annual water balance conditions (Supporting Information Figure S2). First of all, water deficit is the most limiting factor for tree stem radial growth in the Southwest USA (Adams & Kolb, 2005; Hidalgo, Dracup, MacDonald, & King, 2001; Kolb, 2015), and this was basis of our study approach. Second, the correlation between monthly water balance anomalies \(D_{m}\) and RWIs is mostly positive (Supporting Information Figure S2a), suggesting that water deficit limits tree-ring growth there all year round. This is also important because inconsistent limiting effects would cause interference when studying the impacts of drought processes. Third, variation in the monthly water balance anomaly \(D_{m}\) was roughly

FIGURE 6 Effect of onset timing and severity of drought on ring width indices (RWIs). (a) Monthly water balance condition of continuous SI droughts in the pregrowing season (blue center lines indicate medians, the bottom and top edges indicate the 25th and 75th percentiles, the whiskers extend to all data points except outliers which are plotted individually using “+”). (b) Monthly water balance condition of continuous SI droughts in the growing season (orange center lines indicate medians). (c, e, g) Comparison of annual water balance \(D_{y}\) anomalies of pregrowing season (blue bars) and growing season (orange bars) drought scenarios under SI, SII, and SIII levels of drought severity. A significant difference in the \(D_{y}\) anomaly between pregrowing and growing seasons was found under each severity. (d, f, h) Impact of drought onset timing on RWIs for SI, SII, and SIII severity. A significant difference in the RWIs between pregrowing and growing seasons was found under each severity level. Sample sizes for the pregrowing season and growing season for SI were 1,731 and 1,485 (c, d), for SII they were 279 and 284 (e, f), for SIII they were 127 and 48 (g, h), respectively.
constant within a hydrological year (Supporting Information Figure S2b), suggesting that each month could be treated equally when designing drought scenarios. Finally, a variable climate could result in diverse tree-ring samples, which are helpful for reducing bias in natural experiments (Rutter, 2007). With these “near-standard” water balance characteristics, it was reasonable to extract relatively general response patterns of tree stem radial growth to drought process. Nevertheless, might these patterns also be found in other regions with different climate types?

Mediterranean climate areas, for instance, with hot, dry summers and cool, wet winters, are very different from Southwest USA where the climate is driven by a summer monsoon. After examining interannual water balance conditions (Supporting Information Figures S1, S3 and S5), California with Mediterranean climate (Köppen, 2011) is suitable in general for testing response patterns of tree stem radial growth to drought process. Nevertheless, the response pattern of tree-ring growth to different dimensions of drought in California did show similarity to that in Southwest USA (Supporting Information Figure S6), which strengthened our initial conclusions.

In summary, as drought frequency, duration and severity increased, regional mean RWIs decreased (Figure 7). Within a hydrological year, increasing the frequency and duration would result in drought “cumulative effects,” which reduce trees’ resistance and gradually push them into a more vulnerable state, thereby amplifying the impacts of drought on trees (Figure 7). Water balance condition of current year is critical to tree stem radial growth and pregrowing season droughts could profoundly affect later radial growth. Both the onset timing and severity of drought strengthened its “legacy effects,” which reduce trees’ resilience and make it harder for them to recover completely from drought (Figure 7). Therefore, it is important to study drought as a process and complex regime with multiple dimensions. We suggest that intra-annual water balance conditions be thoroughly studied for mechanism-based simulations and predictions of forest response to drought, before attributing uncertainties to spatial heterogeneity, vegetation differences, and climate change.

ACKNOWLEDGEMENTS

We acknowledge contributors to the International Tree-Ring Database for tree-ring data. We thank anonymous reviewers for their constructive comments and suggestions for improving this manuscript. This study was supported by the National Natural Science Foundation of China (grant numbers 41571185 and 41621061), the Fundamental Research Funds for the Central University (grant numbers 2015KJJCBB33), with additional financial support from the China Scholarship Council. C.Y. was supported by the City University of New York (PSC-CUNY ENHC-48-33 and PSC-CUNY CIRG-80209-08 22).

ORCID

Shan Gao http://orcid.org/0000-0002-1452-8741

REFERENCES

Proceedings of the National Academy of Sciences, 110, 52–57. https://doi.org/10.1073/pnas.1207068110

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.