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Abstract
A shift to higher temperatures has left the Mediterranean Europe and Northern Africa (MENA) region more vulnerable 
to drought and land degradation. We used MODIS LAI (leaf area index) and GPP (gross primary production) deficits, the 
differences between actual and historical-maximum values, to describe vegetation structural and functional changes and 
consequential landcover change in response to changing climate conditions during 2001–2019 in the area (20° W–45° E, 20° 
N–45° N). We found that 1) the vegetation responses varied significantly among eight landcover types with the decreasing 
importance: forests, savannas, a mosaic of cropland and natural vegetation (CNV), croplands, permanent wetlands, urban 
land, grasslands, and shrublands, each with distinctive yet overlapping signatures over the ranges of the climate conditions 
considered. 2) Forests, occupying the coolest and wettest niche, showed the strongest response to severe drought with a lag 
of 1–3 years and a legacy effect for 10 years. Shrubs, occupying the hottest and driest niche, were the most resilient under a 
hotter and drier climate. 3) The total areas of savannas and CNV increased by 394,994 and 404,592  km2, respectively, while 
that of forests decreased by 33,091  km2. Shrublands extended by 287,134  km2 while grasslands and croplands retreated by 
490,644 and 225,263  km2. The area of wetlands increased by 49,192  km2, and that of urban land increased by 39,570  km2. 
A total of 57,649  km2 of barren land became vegetated over the years. Along with higher temperature and more extended 
period of drought, MENA has evolved towards a shrubbier landscape.

Keywords LAI deficit · GPP deficit · Climate drivers · Legacy effect · Landcover transition

Introduction

Landcover, especially vegetation dynamics over land, plays 
a critical role in atmospheric processes and the water and 
carbon cycles globally (Foley et al. 1996; Sitch et al. 2003; 

Assal et al. 2016). An analysis of FLUXNET data revealed 
that the exchanges of carbon, water, and energy between ter-
restrial ecosystems and the atmosphere are limited primarily 
by water availability when the mean annual temperature is 
above a threshold of 16 °C (Yi et al. 2010). Climate records 
from the past 6 decades show that the annual mean tempera-
ture of a significant part of the Mediterranean, Europe, and 
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Northern Africa (MENA) region have shifted from below to 
above this temperature threshold (Yi et al. 2014; Allen et al. 
2015; Huang et al. 2015). This shift to higher temperatures 
has left the largely arid and semiarid MENA region more 
vulnerable to drought and land degradation (Somot et al. 
2008; Segui et al. 2010; Friend 2010; IPCC 2013; Zhang 
et al. 2020; Peñuelas and Sardans 2021). Indeed, some stud-
ies have reported drought-induced forest impacts and die-
backs in the Mediterranean region (Allen et al. 2010; Car-
nicer et al. 2011; Peñuelas et al. 2001; Martínez-Vilalta and 
Piñol 2002; Matusick et al. 2013), as well as shifts in veg-
etation composition (Jump and Peñuelas 2005; Anderegg 
et al. 2012).

The drivers of changing vegetation patterns are complex, 
and human activity as well as climate change is involved 
(Alexandrian et  al. 1998). Indeed, changing climate is 
clearly linked to changes in human land use in the MENA 
region (Cramer et al. 2018). However, in this study, we seek 
to identify statistical correlations between patterns of vegeta-
tion and climate in the MENA region. Climate is a strong 
contributor to variability and change of vegetation and is a 
matter of both ecological and economic concern, as strong 
sensitivity to climate can result in rapid land use change 
(Vanacker et al. 2005; Serra et al. 2008a, b). Over longer 
time scales, relatively small shifts in background climate 
can impact the distribution of ecosystems and potentially 
the viability of agricultural and pastoral systems (Ciais et al. 
2005; Vicente-Serrano et al. 2012a, b). Interest in the cli-
mate sensitivities of vegetation in semiarid regions is evident 
in the substantial body of research devoted to characteriz-
ing the relationships between precipitation, soil type, land 
management, and vegetation growth in these water-stressed 
regions (Zaitchik et al. 2007; Vicente-Serrano et al. 2012a, 
b). Previous studies have shown that, since 1948, a warmer 
climate has moved the 16 °C isotherm poleward, leading to 
a predicted northward shift of vegetation distribution of the 
Northern hemisphere (Yi et al. 2014). Vicente-Serrano et al. 
(2012a, b) also showed a decline of the average vegetation 
cover in the semiarid Mediterranean environments during 
1984–2008.

At regional to continental scales, satellite observation 
offers a feasible and effective approach for monitoring veg-
etation dynamics. One of the most common observations of 
vegetation dynamics is based on the normalized difference 
vegetation index (NDVI). The NDVI, computed as a normal-
ized ratio of reflectance in the near-infrared and red por-
tions of the electromagnetic spectrum, provides a measure 
of chlorophyll abundance at the Earth’s surface and offers an 
indirect measure of energy absorption and vegetation density 
(Myneni et al. 1995a, b; Kerr and Ostrovsky 2003).

Several vegetation indices with direct ecological mean-
ings are derived from NDVI using additional algorithms and 
information. One of them is the leaf area index (LAI). LAI 

is a fundamental parameter that reflects vegetation struc-
ture involved in the processes of fixing atmospheric  CO2 
into organic matter. LAI is defined as the one-sided green 
leaf area per unit ground area in broadleaf canopies and as 
half the total needle surface area per unit ground area in 
coniferous canopies. Another widely used vegetation index 
is gross primary production (GPP), which is a measure of 
vegetation function in the processes of fixing atmospheric 
 CO2 into organic matter. GPP correlates closely with LAI 
where LAI is ~ 4 or less, suggesting that leaf area is a critical 
determinant of GPP in most of the MENA region (Chapin 
et al. 2011).

This study took advantage of interannual climatic vari-
ability during 2001–2019 (Sprintsin et al. 2009; Fischer and 
Knutti 2015) to characterize the climatic sensitivities of veg-
etation in the MENA region. We applied the “perfect deficit” 
approach (Yi et al. 2012) to identify the primary climatic 
drivers of LAI variability over vegetation across the entire 
MENA domain aggregated by landcover class.

We used both LAI deficit and GPP deficit as direct meas-
ures of climate and non-climate stress on ecosystem struc-
ture and function experienced by the vegetation of the semi-
arid MENA area. We focused on climate stress expressed by 
some climate indices describing thermal and water condi-
tions and their combined effects. We attempted to establish 
empirical connections of LAI deficit and GPP deficit with a 
few climate variables/indices (i.e. annual average tempera-
ture (T), annual average precipitation (mm), Dryness Index, 
Temperature–Precipitation (TP) Index, and Standardized 
Precipitation–Evapotranspiration Index (SPEI)). Our aim 
was to understand how landcover changes, especially veg-
etation structural and functional changes and variabilities, 
respond to these climate variables: Specifically, we exam-
ined which of these variable(s) are the dominant driver(s) 
for the interannual variability of LAI and GPP deficit. When 
vegetation types were considered individually, we hypoth-
esized that LAI deficit and GPP deficit of different vegeta-
tion types would respond to climate variables differently, and 
that the distribution of vegetation types may extend or shrink 
in response to climate change. The direction and intensity of 
a possible landcover shift were further explored with land-
cover transition matrices. Such ecological assessment at the 
temporal scale of decades is much needed for the strategic 
planning of resource management, for optimizing vegetation 
productivity and ecosystem services.

Materials and methods

Climate and remote sensing data

We collected remote sensing data such as MODIS LAI, 
GPP and landcover, and various climate measures for the 
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MENA region, defined as the bounding box of 20° N–45° 
N and 20° W–45° E. This is a box-shaped area around the 
Mediterranean Forests, Woodlands & Scrub biome defined 
by the World Wide Fund for Nature (WWF) in the MENA 
region (Fig. 1).

For the remote sensing datasets of LAI and GPP suit-
able for this study, we compared the spatial resolution across 
all available products for the study area and noticed that 
500 m was the highest spatial resolution with continuous 
time series coverage. Using LAI as an example, there are 
alternative datasets such as the NOAA CDR AVHRR LAI 
FAPAR: Leaf Area Index and Fraction of Absorbed Photo-
synthetically Active Radiation, Version 5 and GCOM-C/
SGLI L3 Leaf Area Index (V2). However, the spatial reso-
lution of the NOAA dataset is 0.05 degree, approximately 
5.5 km while that of the GCOM-C/SGLI is 2.5 arc minutes, 
which is about 4.58 km. Both are much coarser than what we 
employed. Given the large size of our study area, the pixel 
size of 500 m is assumed to convey sufficient information to 
address our research questions.

Although the mosaic of plant communities also responded 
to local geologic, topographic and soil heterogeneity, for 
which a finer resolution of 1–100 m landcover dataset might 
be more appropriate, a coarser landcover dataset with 500 m 
resolution would suffice for our focus on vegetation-climate-
vegetation interactions and feedback loops in this paper.

Remote sensing data

We used 19 years (01-Jan-2001–31-Dec-2019) of global 
8-day composite MODIS LAI (MODIS/006/MOD15A2H), 

GPP (MODIS/006/MOD17A2H), and yearly landcover 
data (MODIS/006/MCD12Q1) at 500 m resolution from 
the NASA Land Processes Distributed Active Archive 
Center (LP DAAC), USGS/Earth Resources Observa-
tion and Science (EROS) Center within Google Earth 
Engine. Annual landcover classification is defined with 
the International Geosphere Biosphere Programme (IGBP) 
global vegetation classification scheme. It describes the 
landcover properties derived from observations span-
ning a year of Terra and Aqua MODIS data. The primary 
landcover scheme identifies 17 landcover classes defined 
by IGBP, which includes 11 natural vegetation classes, 
3 developed and mosaicked land classes, and 3 non-veg-
etated land classes. For our analyses, we grouped these 
into eight categories of vegetated cover: forests (including 
class 1–5, evergreen needleleaf forest, evergreen broad-
leaf forest, deciduous needleleaf forest, deciduous broad-
leaf forest, and mixed forest), shrublands (including class 
6–7, closed shrublands and open shrublands), savannas 
(classes 8–9 woody savannas and savannas), grasslands 
(class 10), permanent wetlands (class 11), croplands (class 
12), urban and built-up (class 13) and crop + natural veg-
etation (CNV) mosaic (class 14). Pixels with landcover 
that changed over the years were coded white in the map 
(Fig. 1) and were excluded for the no-landcover-change-
based analyses along with the non-vegetated areas (includ-
ing snow and ice-class 15, barren land-class 16 and water-
class 17).

Fig. 1  A map of vegetated areas with no change of landcover types 
during 2001–2018 (500 m resolution) in Mediterranean Europe and 
North Africa (MENA, 20° W–45° E and 20° N–45° N). Pixels that 
experienced landcover change were in white color. Annual landcover 
classification is defined by the MODIS Landcover CMG (MCD12Q1) 
product’s International Geosphere Biosphere Programme (IGBP) 
global vegetation classification scheme (https:// lpdaac. usgs. gov/ produ 

cts/ modis_ produ cts_ table/ mcd12 c1). The primary landcover scheme 
identifies 17 classes, and were grouped into 8 categories: forests 
(class 1–5), shrubland (class 6–7), savannas (class 8–9), grasslands 
(class 10), permanent wetlands (class 11), croplands (class 12), urban 
and build-up (class 13), and crop + natural vegetation mosaic (class 
14). The non-vegetated areas (water and barren land) were excluded 
from relevant analyses

https://lpdaac.usgs.gov/products/modis_products_table/mcd12c1
https://lpdaac.usgs.gov/products/modis_products_table/mcd12c1
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Climate indices

We chose two primary instrumental measures (tempera-
ture and precipitation) and three compound climate indices 
which transform basic climate variables such as tempera-
ture and precipitation in different ways to assess water 
stress, one with a linear function, one with an exponential 
function, and one being standardized, for this study.

We used monthly global surface air temperature 
(average air temperature at 2 m height) and precipita-
tion (monthly sum) data (01-Jan-2001–31-Dec-2019) at 
0.25° resolution provided by ECMWF/Copernicus Cli-
mate Change Service within Google Earth Engine. The 
source of these data ERA5 is the fifth generation ECMWF 
atmospheric reanalysis of the global climate that com-
bines model data with observations from across the world 
into a globally complete and physically consistent dataset.

To calculate dryness index, we collected monthly 
average net radiation (W  m−2) data (01-Jan-2001–31-
Dec-2019) at 0.1 degree resolution from the FLDAS 
(Famine Early Warning System Network (FEWS NET) 
Land Data Assimilation System) dataset (Mcnally et al. 
2017) provided by the NASA GES DISC at NASA Godd-
ard Space Flight Center within Google Earth Engine. This 
FLDAS dataset uses Noah version 3.6.1 surface model 
with CHIRPS-6 hourly precipitation that has been down-
scaled using the NASA Land Surface Data Toolkit.

We first resampled the radiation data with the same 
projection system and resolution of the temperature and 
precipitation data. Net radiation (Rn) is defined as the sum 
of net shortwave radiation and net longwave radiation in a 
downward direction.

The dryness index of Budyko (1961) was calculated by:

where Rn (MJ  m−2  year−1) and P (mm  year−1) are, respec-
tively, monthly mean net radiation and precipitation for each 
grid cell and L is a constant 2.5 MJ  kg−1, the enthalpy of 
vaporization. Because temperature is often positively cor-
related with Rn, dryness increases in response to increasing 
T or decreasing P. When there is no precipitation in a month, 
the dryness index value could be infinitely large. On the 
global-scale the average net radiation was between 98 and 
112.6 W  m−2 (Liang 2018) and average precipitation mul-
tiplied by L was comparable, therefore, the dryness index 
values (annual average of the monthly values) were capped 
under 100 for later analysis.

Temperature–Precipitation (TP) Index was derived 
initially from a model of soil nitrogen variations (Jenny 

(1)Dryness =
Rn

LP
,

1984) and further adapted to model vegetation responses 
to a changing climate (Yi et al. 1996). It is calculated by:

where T (°C) and P (mm  year−1) are annual mean tempera-
ture and precipitation for each grid cell, respectively (Yi 
et al. 1996). TP Index increases in response to decreasing T 
or increasing P.

SPEI (Standardized Precipitation–Evapotranspiration 
Index) is a measure of water balance, calculated by the 
standardization of water deficit D,

where P (mm  year−1) and PET (mm  year−1) are precipitation 
and potential evapotranspiration for each grid cell, respec-
tively (Vicente-Serrano et al. 2010). The SPEI can measure 
drought severity according to its intensity and duration. It 
can identify the onset and end of drought episodes as well. 
The SPEI is a standardized variable, and it can, therefore, 
be compared with other SPEI values over time and space. 
An SPEI of 0 indicates a value corresponding to 50% of 
the cumulative probability of D, according to a log-logistic 
distribution (a continuous probability distribution for a non-
negative random variable) of D, over a reference period, 
while positive values indicate wetter than typical conditions 
and negative values indicate abnormally dry conditions.

A globally gridded (0.5° resolution) SPEI index calcu-
lated from the CRU TS3.23 precipitation and reference evap-
otranspiration was provided by the SPEI website (https:// 
digit al. csic. es/ handle/ 10261/ 202305). The SPEI used in the 
analyses was at the 12-month temporal scale ending Decem-
ber of the previous year.

Perfects, deficits, and relative deficits

Many large-scale vegetation and landcover studies are for-
mulated as statistical analyses of climatological anomalies. 
This study took a vegetation-centric approach, focusing on 
the differences in vegetation performance under optimal and 
suboptimal conditions.

Yi et al. (2012) introduced a “perfect-deficit” approach 
for quantifying links between climate extremes and varia-
tions in carbon storage. We applied this approach in devel-
oping a climate stress indicator based on our MODIS LAI 
and GPP data in the MENA area, available for every 8-day 
period throughout a year, then converted to monthly val-
ues. For each pixel, the “perfect” LAI value of the month 
is defined as the maximum LAI value for this month over 
the 19 years, and the “deficit” LAI value of the month for 
each year is defined as the difference between the observed 

(2)TP = e−0.08T (1 − e−0.005P),

(3)D = P − PET,

https://digital.csic.es/handle/10261/202305
https://digital.csic.es/handle/10261/202305
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value from the “perfect” value of that month. Therefore, 
for the entire studied time span (2001–2019) for the ith 
month,

and for the ith month of the jth year,

Essentially, we were looking at how the observed LAI 
for a given month under suboptimal climate and ecologi-
cal conditions departed from the highest value observed for 
that time of the year over the 19 years. The perfect value is 
presumed to correspond to the optimal growing conditions 
of climate, edaphic features, and other impinging ecological 
factors for that particular area.

The monthly LAI or GPP deficit values were first aver-
aged within each year to give us an annual mean deficit for 
each pixel, then were averaged spatially (pixel by pixel) 
across each of the landcover classes for each year.

Data analyses

There were four sequential steps of data analyses (Supple-
mentary Fig. 1). Step 1—eight vegetated landcover types 
with no change over 18 years were extracted to conduct 
multiple regression analyses; Step 2—regressions of veg-
etation structural (LAI deficit) and functional (GPP deficit) 
responses over climate drivers (including temperature, pre-
cipitation, TP index, dryness index, and SPEI) were con-
ducted over all vegetated pixels and within each of eight 
vegetation types; Step 3—results of ten regression analy-
ses and probability density function (PDF) curves of seven 
variables all pointed to the strong constraints within each 
vegetation type, which shed new light on landcover changes 
over the years. Step 4—using the characteristic order along 
the spectrums of climate variables and vegetation response 
variables, direction and intensity of landcover change were 
quantified using time series and transition matrices.

All LAI, GPP, and landcover data were retrieved within 
Google Earth Engine from MODIS products (MOD15A2 
and MOD17A2, MCD12Q1). All climate datasets (global 
surface air temperature, precipitation, and net shortwave 
radiation data with temporal resolution of 1 month) were 
resolved to a common projection at 0.25° resolution. All 

(4a)LAIPerfect(i) = Maximum{LAIObserved(i)2001, LAIObserved(i)2002,… , LAIObserved(i)2019},

(4b)GPPPerfect(i) = Maximum{GPPObserved(i)2001, GPPObserved(i)2002,… , GPPObserved(i)2019},

(5a)LAIDeficit(i, j) = LAIPerfect(i)−LAIObserved(i, j),

(5b)GPPDeficit(i, j) = GPPPerfect(i)−GPPObserved(i, j).

annual LAI deficits, annual GPP deficits, and all climate 
indices were calculated within Google Earth Engine using 
JavaScript. Because we are looking for long-term large-

scale patterns, all data were aggregated to annual averages 
of eight landcover types. All processed spatial data were 
then exported to Geotiff files with WGS84 and 500 m reso-
lution for further statistical tests and graphing in R-Studio 
(version 1.2.1335). All maps were made in ArcGIS Desktop 
10.7.1.11595.

Results

Climate drivers

The first objective of the study was to find the climate indi-
ces that the vegetation structure indicator LAI and func-
tion indicator GPP responded to the most, and how those 
relationships vary across different vegetation types. We 
found that overall LAI deficit was negatively correlated with 
annual average temperature (Fig. 2a, adjusted R2 = 0.529, 
p < 0.001) and dryness (Fig.  2g, adjusted R2 = 0.583, 
p < 0.001), positively correlated with precipitation (Fig. 2c, 
adjusted R2 = 0.613, p < 0.001), and TP Index (Fig. 2g, 
adjusted R2 = 0.491, p < 0.001), and not correlated with SPEI 
(Fig. 2i, adjusted R2 = 0.007, p = 0.155) (Table 1). Among 
the eight landcover categories, only forest consistently 
showed a similar pattern to the overall vegetation structural 
responses while shrubland showed an opposite trend or no 
trend.

Similarly, we found GPP deficit of overall vegetation 
was negatively correlated with annual average tempera-
ture (Fig.  2b, adjusted R2 = 0.553, p < 0.001) and dry-
ness (Fig. 2h, adjusted R2 = 0.615, p < 0.001), positively 
correlated with accumulative precipitation (Fig.  2d, 
adjusted R2 = 0.548, p < 0.001), TP Index (Fig. 2f, adjusted 
R2 = 0.509, p < 0.001), and weakly with SPEI (Fig.  2j, 
adjusted R2 = 0.041, p = 0.007) (Table 1).

Among all the eight landcover categories: only forest 
showed an almost consistently similar pattern to the overall 
vegetation structural responses while shrubland showed an 
opposite trend or no trend. The only exception was in precip-
itation. Within each vegetation type, GPP deficit decreased 
when precipitation increased. In another word, the more pre-
cipitation, the less reduction of GPP within each vegetation 
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Fig. 2  Regressions of veg-
etation structural (LAI deficit) 
and functional (GPP deficit) 
responses over climate drivers 
including a, b annual average 
temperature (°C, T), c, d accu-
mulative precipitation (mm, P), 
e, f Temperature–Precipitation 
(TP) index, g, h dryness index, 
i, j Standardized Precipita-
tion Evapotranspiration Index 
(SPEI) for all vegetated pixels 
(black lines, solid if p < 0.01, 
dotted if p > 0.05) and within 
each of 8 vegetation types 
(color coded with 95% con-
fidence intervals in gray); for 
each panel, probability density 
function (PDF) curves were 
plotted with the same scheme 
of color code, horizontal on the 
top for the climate variables (T, 
P, TP index, dryness or SPEI), 
and vertical on the right for the 
response variables (LAI or GPP 
deficit)
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type as we would normally expect under semiarid climates. 
The overall correlation between GPP deficit and precipita-
tion was positive.

Landcover‑specific signatures over the spectrums 
of climate conditions

Based on the probability density function (PDF) curves for 
both dependent variables (i.e. vertical PDF graphs for LAI 
and GPP deficits) and independent variables (i.e. horizontal 
PDF graphs for climate indices) (Fig. 3), each vegetation 
cover demonstrated unique and sometimes overlapping dis-
tribution signatures over the span of structural and func-
tional responses, and climate conditions.

For example, forests had by far the highest LAI defi-
cits (11.3 ± 1.1  m2  m−2), followed by savannas (7.1 ± 0.7 
 m2   m−2), CNV mosaic (6.8 ± 0.6  m2   m−2), croplands 
(6.8 ± 0.5  m2  m−2), wetlands (6.1 ± 0.5  m2  m−2), urban land 
(3.9 ± 0.3  m2  m−2), grasslands (3.3 ± 0.4  m2  m−2), and shrub-
lands (1.5 ± 0.2  m2  m−2) in descending order (Table 2). The 
LAI deficit of shrublands was less than half of that of grass-
lands, which was the second lowest among all. Likewise, 
forests had the highest GPP deficits, followed by the same 
descending order (Table 2). This order reflected the dif-
ferential responses, both structural and functional, to these 
climate variables among these vegetation types, and their 
differential responses to climate stress.

When looking into the span of climate conditions, 
stratification of landcover classes by climate conditions 
is evident in the data record. Forests occupied the coolest 
(10.0 ± 0.5 °C) and wettest (1102.3 ± 87.3 mm) niche while 
shrublands occurred in the hottest (17.5 ± 0.3 °C) and driest 
(342.2 ± 49.2 mm) area, polar opposite to forests. Each veg-
etation landcover type is constrained within a limited range 

of climate conditions but each has a certain level of overlap 
with others. Within a constrained range of climate condi-
tions, alternative steady states (vegetation types) may exist.

Landcover change over time

Remotely sensed areal change of landcover

According to the MODIS annual landcover product during 
2001–2018, the total areas of savannas and CNV mosaics 
in MENA increased by 394,994  km2 (5.3% of savanna area 
in 2001) and 404,592  km2 (29.7% of CNV area in 2001), 
with a significantly steady increasing trend (R2 = 0.930 and 
0.913, respectively), while the area of forests decreased by 
33,091  km2 (1.6%) (Fig. 3a–c) despite the fertilizer effect of 
elevated ambient  CO2.

More specifically, the area identified as forest in this 
analysis decreased by 41,401  km2 (a 2.9% drop) over 
3 years following the drought/heat wave of 2002, and did 
not recover to the pre-drought level until 2014, 11 years 
after the drought. It is unclear whether other droughts (e.g. 
2005) also impacted vegetation dynamics and prolonged 
the recovery. A second major drop happened between 2016 
and 2017, leaving an overall areal decline between 2001 
and 2018.

Over the 18 years, shrublands, occupying the hottest and 
driest niche of MENA, extended by 287,134  km2 (11.5%) 
while grasslands and croplands retreated by 490,644  km2 
(4.6%) and 225,263  km2 (1.2%) (Fig. 3d–f). Shrubs showed 
a 5-year increase after the 2002 drought and an overall 
increasing trend in shrublands (Fig.  3f), while grasses 
showed an initial 3-year increase after the 2002 drought 
then continuous decline afterward for 13 years (Fig. 3e). 

Table 1  Regressions of annual Leaf Area Index (LAI) deficit and gross primary productivity (GPP, in g C  m−2  year−1) deficit over climate driv-
ers

TP Index Temperature–Precipitation Index, SPEI Standardized Precipitation/Evapotranspiration Index, LAI Leaf Area Index, GPP gross primary 
productivity  (gCm−2  year−1)

Dependent variable (Y) Independent variable (X) Adjusted coefficient of 
determination (R2)

Degrees of free-
dom (df1, df2)

Significance (p) Intercept Slope

LAI deficit Temperature 0.53 1,150 < 0.0001 220.68 − 11.39
Precipitation 0.61 1,150 < 0.0001 − 20.77 1.40
TP index 0.49 1,150 < 0.0001 − 26.21 260.90
Dryness index 0.59 1,150 < 0.0001 107.35 − 7.84
SPEI 0.01 1,150 0.155 73.48 7.63

GPP deficit Temperature 0.55 1,151 < 0.0001 2925.10 − 129.56
Precipitation 0.55 1,151 < 0.0001 255.63 14.77
TP index 0.51 1,151 < 0.0001 122.75 2952.20
Dryness index 0.62 1, 151 < 0.0001 1638.60 − 89.64
SPEI 0.04 1, 151 0.007 1283.74 159.26



 Oecologia

1 3



Oecologia 

1 3

Croplands occupied the largest area in 2003 (18,582,372 
 km2) both temporally across 18 years and spatially across 
eight vegetation types, right after the 2002 drought, then 
declined afterwards with fluctuations.

The area of permanent wetlands increased by 49,192  km2 
(24.9%), and that of urban land increased by 39,570  km2 
(2.9%) (Fig. 3g, h).

Matrices of landcover change

To quantify the direction and intensity of change, we used 
the area of each vegetation type that had changed to make 
transition matrices. A transition matrix could illustrate the 
detailed vegetation transition during either a short-term 
period (i.e. during 2002–2003 right after the 2002 heat-
wave/drought) or a long-term period (i.e. during 2001–2018) 
(Table 3; Fig. 4).

In Table 3, the diagonal cell areas remained in the same 
vegetation types. The upper right triangle portion indicates 
transitions to a less productive vegetation type, while the 
lower-left triangle indicates transitions to a more productive 
vegetation type, based on what we have learned from PDF 
curves of LAI and GPP deficits.

During 2002–2003, 17,775  km2 of the forested area 
became less productive and remote sensing identified them 
as savannas, while a total of 22,680  km2 of barren land 
became vegetated (turned into grassland and shrubland). 
As a result, a total of 52,986  km2 became less productive 
based on the four categories with over 5000  km2 (i.e. from 
forest to savanna, from savanna to grassland, from crop-
land to grassland, and from grassland to shrubland) while 
a total of 56,814  km2 became more productive based the 
five categories listed in the lower triangle (i.e. from grass-
land to savanna, from grassland to cropland, from shrubland 
to grassland, and from barren land to either grassland or 
shrubland).

During 2001–2018, 55,948  km2 of the forested area 
became less productive savannas (Fig. 4, visible in southern 
France and western Portugal) while 54,475  km2 of savannas 
had the reversed transition, leaving a net loss of forests by a 
mere 1473  km2. A total of 85,257  km2 of barren land became 
vegetated (mostly turned into grassland and shrubland) and 
27,609  km2 of vegetated pixels became barren, leaving a 
net gain of 57,649  km2 of the vegetated area from barren 
land (0.9%). Such green-up is visible in parts of northern 
Algeria and Tunisia, eastern Iran, northern Saudi Arabia and 

northern Egypt (Fig. 4). There was a total area of 413,922 
 km2 that became more productive and 260,560  km2 became 
less productive (based only on categories of transition with 
20,000  km2 or more).

Discussion

One of the most climate sensitive regions of the world is 
the Mediterranean basin (MENA) (IPCC 2013). Changes 
in human population distribution, conflict, land manage-
ment and land use have occurred concurrent with changes 
in climate and have altered vegetation patterns across the 
region, with feedback to the regional climate (Tanrivermis 
2003; Serra et al. 2008; Bajocco et al. 2012; Millán 2014; 
Luyssaert et al. 2014; Perugini et al. 2017; World Bank 
2021; Wolpert et al. 2020; Ruiz and Sanz-Sánchez 2020). 
We recognize that in evaluating causes of regional vegeta-
tional changes it may be difficult to separate those induced 
by climate regionally from other causes of landscape-scale 
changes such as political and economic changes, particularly 
in regions of the globe that lack extensive data on land use 
and management, and considering the interactions of these 
societal factors with climate change is an important goal for 
future analyses, although difficult to do at this large spatial 
scale. Well-known examples of land use and management 
change not directly driven by climate in the MENA region 
include afforestation in Israel (Rotenberg and Yakir 2011), 
marsh drainage in southern Iraq (Hashim et al. 2019), irri-
gation intensification in several countries (Krakauer et al. 
2020), and widespread urbanization (Rozalis et al. 2010). 
This report, however, is focused particularly on those poten-
tial causes that can be evaluated by satellite remote sensing 
and climate data and operate with some consistency across 
political boundaries, with an eye toward evaluating sub-con-
tinental to global-scale changes elsewhere in the world for 
which these data are readily available, while more fine-scale 
ground-based observational data (e.g. land use and man-
agement) are more difficult to retrieve. While policy and 
management can have an impact on local scale and stepwise 
changes, regional scale change in a long-term, which is our 
focus, should be dominated by climatic changes.

The aim of the study was to use LAI and GPP deficits to 
identify and better understand the impacts of the climate on 
landcover in the MENA region during 2001–2018. Specifi-
cally, we would like to 1) determine critical climate drivers 
for the variability of the landcover as a whole and several 
ecosystem types individually, 2) explore landcover-specific 
signatures over the span of climate conditions, and 3) iden-
tify landcover changes over time and relate these changes to 
climate changes (and other non-climatic drivers).

Fig. 3  Total area  (km2) of eight vegetation types: a) forests, b) savan-
nas, c) croplands, and natural vegetation (CNV) mosaics, d) crop-
lands, e) grasslands, f) shrublands, g) urbanlands, and f) wetlands 
over the period of Jan. 1, 2001–Dec. 31, 2018 in Mediterranean 
Europe and North Africa (MENA, 20° W–45° E and 20° N–45° N)

◂
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Vegetation‑centric approach of LAI and GPP deficits

LAI and GPP deficits provide a different perspective into the 
climate-vegetation interaction, in contrast to the traditional 
climate anomaly approach.

Through examining the responses of LAI deficit and GPP 
deficit of all vegetation types combined and individually to 
various climate indices including T, P, TP Index, dryness 
and SPEI, both LAI and GPP deficits proved to be effective 
indicators of how ecosystem photosynthetic structures and 
functions respond to climate stress. This study took this as 
a starting point to further explore the responses of the two 
deficits to interannual variations of the climatic conditions 
for the MENA region.

The perfect-deficit approach was used at a monthly scale 
derived from the original 16-day product, which is much less 
sensitive to extreme value than a daily or hourly product. 
Technical documentation of MODIS LAI and GPP prod-
ucts listed detailed uncertainty evaluation rules. The MODIS 
LAI/FPAR algorithm consists of a main look-up-table (LUT) 
based procedure (Knyazikhin et al. 1998) that exploits the 
spectral information content of the MODIS red (648 nm) 
and near-infrared (NIR 858 nm) surface reflectance, and the 
backup algorithm that uses empirical relationships between 
Normalized Difference Vegetation Index (NDVI) and can-
opy LAI and FPAR. The theoretical estimates of uncertain-
ties (%) in the BRFs used in the C6 LAI/FPAR algorithm are 
20–30% for red and 5–15% for NIR. The validation strategy 
for MODIS GPP was initially established based on Running 
et al. (1999) and has been widely accepted and applied in 
numerous publications (e.g. Turner et al. 2003, 2004, 2006).

In general, regressions of LAI deficits and GPP deficits 
behaved very similarly, except to precipitation (Fig. 2c, d). 
Both Forest and overall LAI deficits  (m2  m−2) had a posi-
tive correlation with annual precipitation (mm), which was 
quite counter-intuitive. To understand this, we can start with 
Fig. 2d.

Within each vegetation type, GPP deficits (kg C  m−2) 
decreased when annual precipitation (mm) increased, which 
meant less GPP loss within the same year with more pre-
cipitation. This is consistent with existing literature (Wu 
et al. 2011; Nielsen and Ball 2015). The overall regression 
of GPP deficits over precipitation, however, had a counter-
intuitively positive slope, which was overwhelmingly domi-
nated by intrinsic variation among different vegetation types 
(i.e. forests generally have the highest GPP base. Therefore, 
its absolute increase in response to increasing precipitation 
should be the highest). The overall pattern was more strongly 
driven by intrinsic productivities of each vegetation type 
rather than local responses to climate variables alone.

Likely, as in Fig. 2c, the overall regression of LAI deficits 
over precipitation had a positive slope, with the same rea-
son as for GPP deficits—they are tightly constrained within Ta
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each vegetation type. However, within forests, the regres-
sion slope was also positive. To understand this pattern, we 
should also look at what has happened to the area (Fig. 3a; 
Table 3). In 2002, the MENA region experienced a wide-
spread severe drought. The total area of forests decreased 

drastically from 2,102,011  km2 in 2002 to 2,040,610  km2 
in 2003, and it continued to decline for two more years that 
followed, with 2005 having the smallest area of forests. It 
took another 10 years (2005–2014) for the area of forests to 
restore to the pre-drought level. In other words, there were 

Table 3  Areas  (km2) of major vegetation type transition from 2002 (in rows) to 2003 (in columns (categories > 5000  km2) and from 2001 to 
2018 (categories with > 20,000  km2), with the italicized diagonal cells being areas remained in the same landcover types

Area  (km2) of 
vegetation transi-
tion

Forest Savanna CNV mosaic Cropland Wetland Urban Grassland Shrubland Barren Water

2002\2003 (only categories with > 5000  km2 were listed)
 Forest 539,687 17,775
 Savanna (3854) 845,142 17,186
 CNV mosaic 89,324
 Cropland 1,518,885 10,727
 Wetland 16,949
 Urban 104,781
 Grassland 9834 15,729 1,025,717 7298
 Shrubland 8570 343,054
 Barren 9879 12,801 6,367,401
 Water 11,527,805

2001\2018 (only categories with > 20,000  km2 were listed)
 Forest 500,508 55,948
 Savanna 54,475 716,599 21,938 57,586
 CNV mosaic 71,082
 Cropland 22,846 29,875 1,390,808 63,253 22,897
 Wetland 14,708
 Urban 104,735
 Grassland 106,902 77,943 814,238 38,938
 Shrubland 37,853 280,748
 Barren 31,652 52,376 6,309,837
 Water 11,525,705

Fig. 4  Map showing changes 
of landcover types during 
2001–2018 (500 m resolution) 
in Mediterranean Europe and 
North Africa (MENA, 20° 
W–45° E and 20° N–45° N)
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3 years of lag and 10 years of legacy effects in terms of the 
distribution area of forests. Similarly, forest area was at its 
highest in 2017, then declined drastically in 2018, possibly 
due to another extreme event.

If we looked at the time series of LAI deficits, similar lag 
and legacy effects existed. The decline of LAI happened in 
the following few years, therefore, LAI was at its highest 
when precipitation was at its lowest, or LAI deficit was the 
lowest when climate conditions (such as precipitation) sud-
denly became less optimal. Therefore, we see this counter-
intuitive positive slope for regression of LAI deficits over 
annual precipitation.

Five climate indices

There are many climate indices available. For this study, we 
used two primary instrumental measures (temperature and 
precipitation) and three compound climate indices, each pre-
senting a different group of indices that emphasize certain 
aspects of hydro and/or thermal conditions. Dryness index 
is expressed in a linear relationship between net radiation 
and precipitation; TP index is expressed with an exponential 
formula, containing temperature and precipitation; SPEI is 
a standardized index allowing flexibility of temporal scales.

Because Dryness, TP index, and SPEI all contain the 
information of precipitation and are not independent of 
each other, multiple univariate regressions might be easier 
to interpret than a single multivariate regression.

When response variables LAI deficit and GPP deficit 
were plotted against each of the five climate indices, all 
except SPEI were tightly clustered within each vegetation 
type (Fig. 2; Table 2). Because SPEI is a standardized index, 
site specificity has been removed during the calculation. On 
the other hand, these tightly distributed clusters may indi-
cate strong resistance to transitions between vegetation types 
and alternative stable states caused by the changing climate 
(Hirota et al. 2011; Chapin et al. 2011). Although they cur-
rently seem to be within the resilience ranges, further studies 
with finer spatial and temporal scales, and with a finer cat-
egorization of vegetation types and functional groups could 
tell a different story. Patterns operating at finer scales will 
be different from what has been looked at (bigger scales), 
but this may not necessarily lead to a better understanding 
of the processes operating at the coarser resolution we have 
studied (Liao et al. 2020; Chen 2021; Chen et al. 2021; Guo 
et al. 2021).

Eight vegetation covers and their PDFs

Despite their structural and functional responses to climate 
and ecological conditions, most vegetation types are tightly 
constrained, representing steady states for specific combina-
tions of climate conditions and their immediate alternative 

steady states if strong enough forces change them one way 
or another (Fig. 2).

Opposite to patterns in the forests, shrubland LAI deficit 
was positively correlated with dryness index. However, that 
does not necessarily mean if the area experienced prolonged 
directional change related to temperature, water availabil-
ity and solar radiation, a transition of vegetation coverage 
between forests and shrubland could happen. When we 
looked deeply into the ranges of annual average tempera-
ture (10.0 ± 0.5 vs 17.5 ± 0.3 °C), precipitation (91.86 ± 7.28 
vs 28.52 ± 4.1  mm   month−1), TP index (0.51 ± 0.03 vs 
0.19 ± 0.01), Dryness (1.00 ± 0.25 vs 11.11 ± 1.83), and 
SPEI (− 0.34 ± 0.61 vs − 0.64 ± 0.62) of forest and shrub-
land (Table 1), forest, and shrubland are experiencing very 
different local climate changes, thus leading to polar oppo-
site responses. The results are consistent with the “16 °C 
threshold” prediction (Yi et al. 2010), which stated that the 
exchanges of carbon, water, and energy between terres-
trial ecosystems and the atmosphere are limited primarily 
by water availability when the mean annual temperature is 
above a threshold of 16 °C and by temperature when below 
16 °C. Other studies also have looked into the changes in 
landcover under the influence of climate change. For exam-
ple, Vidal-Macua et al. (2017) studied factors affecting forest 
dynamics in the Iberian Peninsula from 1987 to 2012 based 
on Landsat scenes, and found that the geographical transi-
tion from shrubland to forests is closely related to higher 
soil moisture (Topographic Wetness Index—TWI) and 
lower winter solar radiation. Meanwhile, strategies aiming 
at decreasing the risk of decline and promoting resistance to 
abrupt stress in the short term may not enhance long-term 
resilience (Vilà-Cabrera et al. 2018).

Landcover changes and their implications

Combining with transition maps, the transition matrix is a 
powerful tool to specify the direction and intensity of land-
scape changes over the region. Comparing short-term and 
long-term transition matrices can also indicate how vegeta-
tion responds to extreme events (such as the 2002 drought) 
immediately and in a long run.

Even though the percentage of vegetated area of for-
est (4.7%) was far less than cropland (41.2%), grassland 
(23.9%), savanna (17.4%), and shrubland (6.0%), the pat-
terns of LAI deficit of forest were always consistent with the 
LAI and GPP deficit of all vegetation types, which indicates 
the strong forest LAI response to climate and its dominat-
ing influence over the response of the integrated vegetated 
landcover in our analysis. The MENA area was still benefit-
ing from the increase of ambient temperature and  CO2 dur-
ing 2001–2018, as indicated by the green-up of barren land 
and the gradual recovery of forested areas after the 2002 
drought. Vegetation response to elevated CO2 is conserved 
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across a broad range of productivity (Norby et al. 2005), 
but what was initially observed in the temperate free-air 
CO2 enrichment (FACE) experiments (Hendrey 1992; Hen-
drey et al. 1999) may not be representative of other regions 
(Hickler et al. 2008), particularly in degrading landscapes, 
and belowground response could be more continuous than 
aboveground response to  CO2 enrichment (Jackson et al. 
2009) which cannot be detected by satellite data.

This analysis of available data indicates that overall, for-
ests, cropland, and grassland are more vulnerable to climate 
stress, thus declining over the past 18 years, while savanna 
and shrubland are more resilient and their distribution 
expanded. Expansion of shrubland seems to be counter to 
the need for improved agriculture and forestry goals of land 
managers (World Bank 2021), supporting our thesis that 
climate change is a key driver of the trends described here.

The two dominant vegetated landcovers in this area, crop-
land (41.2%) and grassland (23.9%) (Table 2), fluctuated in 
opposite patterns over the years (Fig. 3). This is likely due to 
the expansion of cropland that was usually an encroachment 
into grassland, while fallow croplands generally returned to 
grassland.

One of the most striking patterns was the areas of 
increased shrubs that replaced cropland and grasses 
(upstream of productivity) and barren land (downstream of 
productivity). According to the areal changes of vegetation 
covers during 2001–2018 (partly in Table3b), a total area of 
38,938  km2 was converted from grassland to shrubland and 
22,897  km2 from cropland to shrubland. At the same time, 
37,853  km2 of shrubland was converted back to grassland 
and 14,163  km2 back to cropland, perhaps as a result of 
improved land management. Further, a total area of 52,376 
 km2 was converted from barren land to shrubland, while 
15,232  km2 of shrubland were converted back to barren land, 
and neither of these directional changes would seem to be 
a desirable outcome for current land management practices 
(World Bank 2021). There have been various reports on 
local shrubland dieback in south Spain (Lloret et al. 2016) 
and the overall trend of shrubland cover based on satellite 
data for the entire MENA region shows increasing dieback.

With higher temperature and more extended period of 
drought, MENA is becoming less productive (with fewer 
forests and croplands) with more shrubby vegetation covers, 
with just a small fraction of barren land (less than 1%) that 
became vegetated. Although some authors (e.g. Bastin et al. 
2019) have recently advocated for tree plantation to combat 
desertification derived from global change, our study sug-
gests that a more resilient (and short) vegetation might be 
more suitable for restoration programs in areas like MENA.

The central location and average altitude of forest vegeta-
tion have not yet changed despite the changes in temperature 
and dryness. On the other hand, the mean and median lati-
tude of cropland decreased over the last decade, likely due to 

human effort in improving irrigation systems for agriculture 
purposes. The mean latitude and median elevation of grass-
land also decreased over the last decade. Any increase in 
grassland probably benefited from the fertilization effect of 
elevated ambient  CO2 concentration. This also might have 
a tight association with the escalating incidence of wildfire 
near arid and semiarid areas throughout the world, some of 
which have caused devastating losses (Bladon 2018; Bow-
man et al. 2020; European Commission 2021).

For 2001–2018, the mean latitude (R2 = 0.864, p < 0.001) 
and median latitude (R2 = 0.513, p < 0.05) of cropland both 
decreased significantly. Such a counter-intuitive change is 
probably due to the huge effort of human intervention: estab-
lishing irrigation systems and building dams for agriculture 
(United Nations 1999; FAO 2008).

The mean latitude (R2 = 0.779, p < 0.001) and median 
elevation (R2 = 0.473, p < 0.05) of grassland also decreased 
significantly. Prior field manipulation experiments have 
shown that elevated ambient  CO2 concentration can stimu-
late the growth and accumulation of standing biomass of 
grassland in semiarid areas, acting like a carbon fertilizer 
and a booster of water use efficiency (Dijkstra et al. 2010). 
Grasses dieback during the dry seasons, which naturally turn 
into standing fuel, causing increasing wildfire risk and dev-
astating loss. This has been happening throughout the world, 
especially in Mediterranean ecoregions such as California, 
US (Abatzoglou and Williams 2016; Parks et al. 2017; Goss 
et al. 2020).

The area of permanent wetlands increased by 49,192  km2 
(24.9%) most likely due to sea level rise. At the same time, 
urban land also increased by 39,570  km2 (2.9%) (Fig. 3g, h), 
which reflects the urbanization in the region.

Conclusions

• LAI and GPP deficits, the vegetation-centric approach, 
provide a useful means to differentiate structural and 
function responses among different vegetation types 
under climate stress in the MENA regions, showing the 
areas and productivities of different vegetation types 
have experienced significant short-term and long-term 
changes in response to varying climate and non-climatic 
(e.g. land management) conditions during 2001–2019.

• Over the study period, the areas of savannas and CNV 
mosaics increased by 394,994  km2 and 404,592  km2, 
respectively, while that of forests decreased by 33,091 
 km2. Meanwhile, shrublands extended by 287,134  km2 
while grasslands and croplands retreated by 490,644 
 km2 and 225,263  km2, respectively. The area of wet-
lands increased by 49,192  km2, and that of urban land 
increased by 39,570  km2. Finally, 57,649  km2 of barren 
land became vegetated over the years.
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• Vegetation responses to climate variations depend on 
vegetation types with distinctive yet overlapping sig-
natures over the span of climate conditions considered. 
The climate sensitivity decreases in the following order: 
forests, savannas, a mosaic of cropland and natural veg-
etation (CNV), croplands, permanent wetlands, urban 
land, grasslands, and shrublands. Shrubs were the most 
resilient under a hotter and drier climate. Forests showed 
the strongest and most dominating response to severe 
drought with a lag of 1–3 years and a legacy effect for 
10 years.
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