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Mappings with a single critical point and applications to rational
difference equations

Ying Sue Huang and Peter M. Knopf*

Department of Mathematics, Pace University, Pleasantville, NY, USA

(Received 27 August 2013; accepted 28 November 2013)

Convergence properties of first-order difference equations of the form xnþ1 ¼ f ðxnÞ are
established for a general class of mappings f, where f has at most one critical point.
Using these results, we find necessary and sufficient conditions for the convergence of
the solutions for all difference equations of the form

xnþ1 ¼ Ax2n þ Bxn þ C

ax2n þ bxn þ g

for all possible choices of non-negative coefficients and positive initial values.

Keywords: first-order map; rational difference equations; convergence; single critical
point

1. Introduction

This paper concerns first-order difference equations xnþ1 ¼ f ðxnÞ for mappings f on the

line. Such equations can also be regarded as one-dimensional iterating maps. As an

iterating map, many results have been established. For example, when f is quadratic or

logistic, the dynamic behaviour of the map has been well studied. One can find related

results in the book [15]. There are also studies for more general maps, for example [2,8].

In the paper [16], by comparing a continuous function f with its inverse f 21 in a

neighbourhood of an isolated fixed point �x, a necessary and sufficient condition for the

asymptotic stability of �x is obtained.

There has been a great deal of interest in difference equations when the mapping f is

rational. In particular, when f is linear in the numerator and denominator, the dynamics of

the solutions have been extensively studied. Necessary and sufficient conditions

concerning the behaviour of their solutions have been obtained, see [5,9–11]. However,

as soon as nonlinear factors are introduced into either the numerator or the denominator,

the results are less complete. In papers [13,14], high-order rational difference equations

are studied, where the numerator is quadratic and the denominator is linear. The first-order

difference equation can be regarded as a special case of their study. Sufficient conditions

were established on the parameter values which guarantee that the unique non-negative

fixed point attracts all positive solutions. One can also find other results for high-order

rational difference equations whose numerator is quadratic and denominator is linear or

quadratic. See papers [1,6,7], and book [3] among others. In paper [4], the authors study

the convergence of second-order rational difference equations with quadratic terms. With

a transformation, their equations can be reduced to first-order linear-quadratic rational
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difference equations and the results in that paper can be applied. When f is a quadratic-

quadratic rational function, there are partial results on the convergence properties of this

equation (see [12]).

In this paper, we consider first-order difference equations xnþ1 ¼ f ðxnÞ when function

f is C 1 with at most one critical point. We completely determine the convergence

properties of the solution to this difference equation for any positive initial values if either

the difference equation has no prime period-two solutions or all of the prime period-two

solutions lie on one particular side of the critical point, depending upon whether the

critical point gives a maximum or a minimum.

As an application of our results, we consider the first-order quadratic-quadratic rational

difference equation

xnþ1 ¼ Ax2n þ Bxn þ C

ax2n þ bxn þ g
; ð1Þ

where the coefficients A;B;C;a;b and g are non-negative. We find necessary and

sufficient conditions for the convergence of solutions of this equation for all possible non-

negative coefficients and positive initial values.

2. Definitions and background material results

In order to prove the main theorems, we first establish a number of preliminary results,

several of which are interesting in their own right.

Definition 2.1. A real number �x is said to be a fixed point of the function f : R! R if and

only if f ð�xÞ ¼ �x.

Definition 2.2. A function f : R! R is said to have a (positive) prime period-two pair

ð�p1; �p2Þ, if and only if there exists (positive) real numbers �p1 and �p2, with �p1 – �p2, such

that �p2 ¼ f ð�p1Þ and �p1 ¼ f ð�p2Þ. We call �p1 and �p2 prime period-two points of f.

Definition 2.3.We define the n-th iterate of f as f nþ1ðxÞ ¼ f ð f nðxÞÞ for any integer n $ 1

and f 1ðxÞ ¼ f ðxÞ.
Observe that �x is a positive fixed point of f 2 if and only if �x is a positive fixed point of f

or a positive prime period-two point of f.

Definition 2.4. We say that f f nðx0Þ} ; fx0; f ðx0Þ; f 2ðx0Þ; . . . } is the solution of xnþ1 ¼
f ðxnÞ with initial value x0.

Definition 2.5. The solution f f nðx0Þ} is said to converge to the real number �x if and only
if limn!1 f nðx0Þ ¼ �x.

Definition 2.6. The solution f f nðx0Þ} is said to converge to the prime period-two pair

ð�p1; �p2Þ if and only if either limn!1 f 2nðx0Þ ¼ �p1 and limn!1 f 2nþ1ðx0Þ ¼ �p2, or

limn!1 f 2nðx0Þ ¼ �p2 and limn!1 f 2nþ1ðx0Þ ¼ �p1.
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Lemma 2.7. Suppose that f [ Cðð0;1Þ £ ð0;1ÞÞ. Any solution to xnþ1 ¼ f ðxnÞ that

converges to a prime period-two pair must be a positive prime period-two pair.

Proof. We need to rule out the possibility that the prime period-two pair is of the form

ð�p; 0Þ or ð0; �pÞ with �p . 0. Suppose that limn!1 f 2nðx0Þ ¼ �p and limn!1 f 2nþ1ðx0Þ ¼ 0.

Since �p . 0 and f is continuous on ð0;1Þ, then 0 ¼ limn!1 f 2nþ1ðx0Þ ¼
limn!1 f ð f 2nðx0ÞÞ ¼ f ð�pÞ. This is impossible since f ðxÞ . 0 for x . 0. By a similar

argument, the solutions cannot converge to the prime period-two pair ð0; �pÞ.
We will say that 0 is a fixed point of a function f if f can be extended continuously to the

origin so that f ð0Þ ¼ 0. Otherwise, we will say that 0 is not a fixed point of f. A

Lemma 2.8. Suppose f [ Cðð0;1Þ £ ð0;1ÞÞ.
(a) If f ðð0;a�Þ # ð0;a� for some a . 0 and 0 is not a fixed point of f 2, then for every

x0 [ ð0;a�, the solution ff nðx0Þ} converges to a positive fixed point of f or a

positive prime period-two pair of f in the interval ð0;a� if and only if the solution

ff 2nðx0Þ} converges to a fixed point of f 2 in the interval ð0;a�.
(b) If 0 is not a fixed point of f 2, then for every x0 [ ð0;1Þ, the solution f f nðx0Þ}

converges to a positive fixed point of f or a positive prime period-two pair of f in

the interval ð0;1Þ if and only if the solution ff 2nðx0Þ} converges to a positive fixed
point of f 2 in the interval ð0;1Þ.

(c) If f ð½a;b�Þ # ½a;b� with 0 , a , b, then for every x0 [ ½a;b�, the solution

f f nðx0Þ} converges to a fixed point of f or a prime period-two pair of f in the

interval ½a;b� if and only if the solution f 2nðx0Þ converges to a fixed point of f 2 in

the interval ½a;b�.
(d) If f ð½a;1ÞÞ # ½a;1Þ with a . 0, then for every x0 [ ½a;1Þ, the solution

f f nðx0Þ} converges to a fixed point of f or a prime period-two pair of f in the

interval ½a;1Þ if and only if the solution f f 2nðx0Þ} converges to a fixed point of f 2
in the interval ½a;1Þ.

(e) If f can be extended to be continuous at the origin, then for every x0 [ ½0;1Þ, the
solution f f nðx0Þ} converges to a non-negative fixed point of f or a positive prime

period-two pair of f in the interval ½0;1Þ if and only if the solution f f 2nðx0Þ}
converges to a fixed point of f 2 in the interval ½0;1Þ.

The proof of this lemma is trivial, and we dispense with the proof.

Theorem 2.9. Suppose xnþ1 ¼ f ðxnÞ, where
(i) f [ Cð½a;1Þ £ ½b;1ÞÞ with f ðaÞ ¼ b $ a $ 0,

(ii) f is strictly increasing on ½a;1Þ, and
(iii) f has at most a finite number of fixed points in the interval ½a;1Þ.

Let �xsup ¼ maxf�x : �x is a non-negative fixed point of f }. Then for every initial value

x0 $ a, the solution f f nðx0Þ} converges to one of the fixed points of f in the interval

½a;1Þ in the case f ðxÞ , x as x!1. For the case f ðxÞ . x as x!1, we conclude

that the solution f f nðx0Þ} converges to a fixed point of f when a # x0 # �xsup and

diverge to infinity when x0 . �xsup.
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This result is well known and can be proved using the elementary graphic method of

iteration. This technique can be found in introductory texts on dynamical systems

(for example, see Section 9.2 of [15]).

Assume that 0 # a1 , a2 , 1 and 0 # b1 , b2 , 1.

Theorem 2.10. Suppose xnþ1 ¼ f ðxnÞ, where
(i) f [ Cð½a1;a2�Þ £ ½b1;b2�Þ with f ða1Þ ¼ b1 $ a1; f ða2Þ ¼ b2 # a2,

(ii) f is strictly increasing on ½a1;a2�, and
(iii) f has at most a finite number of fixed points in the interval ½a1;a2�.

Then for all initial values x0 [ ½a1;a2�, the solution ff nðx0Þ} converges to one of the fixed
points of f in the interval ½a1;a2�.

Once again, this result is well known and follows using the elementary graphic method

of iteration.

3. The main general results

Theorem 3.1. Suppose the function f [ Cðð0;1Þ £ ð0;1ÞÞ; f is strictly decreasing, and f

has at most a finite number of positive prime period-two pairs. Then we have the following

conclusion. For every x0 . 0 the solution f f nðx0Þ} converges to either the unique positive
fixed point of f or to a positive prime period-two pair of f , except for the case that all of the

following three conditions hold: limx!0 f ðxÞ ¼ 1, limx!1 f ðxÞ ¼ 0 and f 2ðxÞ , x for

x . 0 and x sufficiently small. Denote �xmin ¼ minf�x . 0 : �x is either a fixed point of f or a

prime period-two point of f }. In the case that all of the three additional conditions above

hold, we have the following conclusion:

(i) For 0 , x0 , �xmin, we have f 2nðx0Þ! 0 and f 2nþ1ðx0Þ!1 as n!1,

(ii) for �xmin # x0 # f ð�xminÞ, the solution ff nðx0Þ} converges either to the unique

positive fixed point of f or to a positive prime period-two pair of f in the interval

½�xmin; f ð�xminÞ�, and
(iii) for x0 . f ð�xminÞ, we have f 2nðx0Þ!1 and f 2nþ1ðx0Þ! 0 as n!1,

Proof. We first claim that f 2 is strictly increasing. Consider any 0 , x1 , x2. Since f is

strictly decreasing, then f ðx2Þ , f ðx1Þ and so f 2ðx2Þ . f 2ðx1Þ as claimed. Since f is

continuous on ð0;1Þ and the range of f is ð0;1Þ, then clearly f 2 is continuous on ð0;1Þ.
Since f 2 is strictly increasing, then we can extend f 2 so that it is continuous on ½0;1Þ with
its range in ½0;1Þ. Since f is strictly decreasing, it has exactly one fixed point �x and this

fixed point is positive. Since f is strictly decreasing, we conclude that either 0 ,
limx!0 f ðxÞ , 1 or limx!0 f ðxÞ ¼ 1.

Case 3.1.1. Assume that 0 , limx!0 f ðxÞ , 1.

In this case f can be extended to be continuous on ½0;1Þ. Since f is strictly decreasing,
then limx!1 f ðxÞ ¼ a for some finite a $ 0. This gives limx!1 f 2ðxÞ ¼ limx!a f ðxÞ ¼
f ðaÞ , 1. Thus, f 2ðxÞ , x as x!1. By Theorem 2.9, for every x0 . 0, the solution

ff 2nðx0Þ} converges to a fixed point of f 2. By assumption, limx!0 f ðxÞ , 1 and so

limx!0 f ðxÞ ¼ b for some finite b . 0. Thus, limx!0 f
2ðxÞ ¼ limx!b f ðxÞ ¼ f ðbÞ . 0. Thus

0 is not a fixed point of f 2. By Lemma 2.8(b), every solution of f converges to either a

positive fixed point of f or a positive prime period-two pair of f .

Case 3.1.2. Assume that limx!0 f ðxÞ ¼ 1.
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Case 3.1.2.1. Assume that limx!1 f ðxÞ ¼ b with b . 0.

Clearly b must be finite since f is strictly decreasing. Observe that

limx!0 f
2ðxÞ ¼ limx!1 f ðxÞ ¼ b. Thus, 0 is not a fixed point of f 2. Next, we have

limx!1 f 2ðxÞ ¼ limx!b f ðxÞ ¼ f ðbÞ which is obviously finite since f is strictly decreasing.

Thus f 2ðxÞ , x as x!1. By the same reasoning as in Case 3.1.1, every solution of f

converges to either a positive fixed point of f or a positive prime period-two pair of f .

Case 3.1.2.2. Assume that limx!1 f ðxÞ ¼ 0.

First, note that limx!0 f
2ðxÞ ¼ limx!1 f ðxÞ ¼ 0. Thus, 0 is a fixed point of f 2.

Consider �x, where �x is either a fixed point of f or prime period-two point of f . Without

loss of generality, we have �x # f ð�xÞ, since �x ¼ f ð�xÞ in the case �x is a fixed point of f

and otherwise ð�x; f ð�xÞÞ is a prime period-two pair of f . We claim that

�xmin # �x # f ð�xÞ # f ð�xminÞ. Since �xmin # �x and f is strictly decreasing, then f ð�xminÞ $
f ð�xÞ as claimed. Thus, every fixed point of f or prime period-two point of f lies in the

interval ½�xmin; f ð�xminÞ�. By Theorem 2.10, if x0 [ ½�xmin; f ð�xminÞ�, then f 2nðx0Þ converges to
a fixed point of f 2 in this interval. Since f is strictly decreasing in the interval ½�xmin; f ð�xminÞ�
and f 2ð�xminÞ ¼ �xmin, then f ð½�xmin; f ð�xminÞ�Þ ¼ ½�xmin; f ð�xminÞ�. By Lemma 2.8(c), for every

x0 [ ½�xmin; f ð�xminÞ�, the solutions f nðx0Þ converges either to a positive fixed point of f or to
a positive prime period-two pair in this interval.

The convergence properties of the solutions on the intervals ð0; �xminÞ and ðf ð�xminÞ;1Þ,
depend upon the behaviour of f 2 near the origin. So, we need two more subcases.

Case 3.1.2.2.1. Assume that f 2ðxÞ . x for x . 0 and x is sufficiently small.

Since 0 and �xmin are the only fixed points of f
2 on the interval ½0; �xmin�, then f 2ðxÞ . x

for 0 , x , �xmin. By the elementary graphic method of iteration, for every x0 [ ð0; �xminÞ,
the solution ff 2nðx0Þ} converges to �xmin. Since f is continuous on the interval ð0; �xmin� and
f ðð0; �xmin�Þ ¼ ½f ð�xminÞ;1Þ, then for every y [ ½ f ð�xminÞ;1Þ, there exists x [ ð0; �xmin� such
that f ðxÞ ¼ y. Since f 2 is strictly increasing and �xmin is a fixed point of f 2, then

f 2ðð0; �xminÞÞ # ð0; �xminÞ. Since f 2ðxÞ . x for x [ ð0; �xminÞ; f 2ðð0; �xminÞÞ # ð0; �xminÞ, and f is
strictly decreasing, then f 2ðyÞ ¼ f 2ðf ðxÞÞ ¼ f ðf 2ðxÞÞ , f ðxÞ ¼ y for all y [ ½ f ð�xminÞ;1Þ.
It follows by using the elementary graphic method of iteration that for every

x0 [ ð f ð�xminÞ;1Þ, the solution f f 2nðx0Þ} converges to f ð�xminÞ. If x0 [ ð0; �xminÞ, then since
x0 , �xmin and f is strictly decreasing, we have f ðx0Þ . f ð�xminÞ. Thus ff 2nþ1ðx0Þ} converges
to f ð�xminÞ. If f ð�xminÞ ¼ �xmin, then f f nðx0Þ} converges to the unique fixed point of f .

If f ð�xminÞ – �xmin, then f f nðx0Þ} converges to the prime period-two pair ð�xmin; f ð�xminÞÞ.
If x0 [ ð�xmin;1Þ, then by the same argument, f f nðx0Þ} converges to �xmin if �xmin is the

unique fixed point of f . If f ð�xminÞ – �xmin, then f f nðx0Þ} converges to the prime period-two

pair ð f ð�xminÞ; �xminÞ.
Case 3.1.2.2.2. Assume that f 2ðxÞ , x for x . 0 and x sufficiently small.

Since 0 and �xmin are the only fixed points of f
2 on the interval ½0; �xmin�, then f 2ðxÞ , x

for 0 , x , �xmin. By the elementary graphic method of iteration, for every x0 [ ð0; �xminÞ,
the solution ff 2nðx0Þ} converges to 0. By the same argument as in Case 3.1.2.2.1, we have

f 2ðyÞ . y for all y [ ð f ð�xminÞ;1Þ. It follows by the elementary graphic method of iteration

that for every x0 [ ð f ð�xminÞ;1Þ, the solution ff 2nðx0Þ} diverges to infinity. As in Case

3.1.2.2.1, if x0 [ ð0; �xminÞ, then f ðx0Þ [ ð�xmin;1Þ. Thus, if x0 [ ð0; �xminÞ, then f f 2nðx0Þ}
converges to 0 and ff 2nþ1ðx0Þ} diverges to infinity. Similarly, if x0 [ ð f ð�xminÞ;1Þ, then
ff 2nðx0Þ} diverges to infinity and ff 2nþ1ðx0Þ} converges to 0. A

Definition 3.2. A C 1 function f is said to have a critical point at x ¼ m if and only if

f 0ðmÞ ¼ 0.
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In Theorem 3.3, denote �xmax ¼ maxf�x . 0 : �x is either a fixed point of f or a prime

period-two point of f }. Denote m to be the solution to f ðmÞ ¼ �xmax with 0 , m , m, if it
exists. We will see in the proof of Theorem 3.3 that if m exists, it must be unique. If m does

not exist, choose m ¼ 0.

Theorem 3.3. Suppose the function f has the following properties:

(i) f [ C 1ðð0;1Þ £ ð0;1ÞÞ.
(ii) f has at most a finite number of positive fixed points and positive prime period-

two pairs.

(iii) f has exactly one relative extreme point at some x ¼ m with m . 0.

(iv) In the case of a relative maximum for f , every prime period-two point �p of f

satisfies �p . m. In the case of a relative minimum for f , every prime period-two

point �p of f satisfies �p , m.

We have the following conclusions:

(a) In the event that f ðxÞ , x as x!1, then for every initial value x0 . 0, the

solution ff nðx0Þ} converges either to a non-negative fixed point of f or to a positive
prime period-two pair of f .

(b) In the event that f ðxÞ . x as x!1, then for x0 [ ½m; �xmax�, the solution f f nðx0Þ}
converges either to a fixed point of f or to a positive prime period-two pair of f in

the interval ½m; �xmax�. When x0 [ ð0;mÞS ð�xmax;1Þ, the solution f f nðx0Þ}
diverges to infinity. If f has no fixed points, then every solution diverges to infinity.

Proof.

Before conducting the details of this proof, we outline the main ideas. First, we point

out that it is sufficient to study the convergence properties of f 2 since the fixed points of f 2

(with the possible exception of 0) are either the fixed points of f or the positive prime

period-two points of f . An important element of the proof is that if the function f has a

single critical point, then the function f 2 has all of its fixed points contained within either

one or two intervals in which f 2 is strictly increasing. The elementary graphic method of

iteration can easily prove convergence properties of solutions when the function is strictly

increasing. On the intervals where f 2 is not strictly increasing we will be able to show that

within a finite number k of iterations, f 2kðx0Þ will be in an interval where f 2 is strictly

increasing. We will also show that for every initial value x0 [ ð0;1Þ, either x0 or f ðx0Þwill
lie in an invariant interval I such that f ðIÞ # I, where we will have been able to prove the

convergence properties of f 2nðx0Þ for any x0 [ I as outlined above. This last step insures

that we will also be able to handle the convergence properties of f 2nþ1ðx0Þ. Now we give

the details of the proof.

Since f is a C 1 function, then the relative extreme point of f at m must be the unique

critical point, that is: f 0ðmÞ ¼ 0. The critical points of f 2 must satisfy

ð f 2Þ0ðxÞ ¼ f 0ð f ðxÞÞf 0ðxÞ ¼ 0, so that they occur exactly when x ¼ m and at any x-values

such that f ðxÞ ¼ m. Since f has exactly one relative extreme point, then there are at most

two positive solutions to f ðxÞ ¼ m, say m1 and m2, with m1 , m2. Furthermore the fact that

m is the unique relative extreme point of f implies m1 , m , m2.

Case 3.3.1. The relative extreme point of f is a relative minimum.
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Since f has exactly one critical point at x ¼ m and it is a relative minimum, then f is

strictly decreasing for x # m and strictly increasing for x $ m. This implies that f has an

absolute minimum at x ¼ m.
Case 3.3.1.1. Assume that f ðmÞ $ m.
Case 3.3.1.1.1. Assume that f ðxÞ , x as x!1.

Since f is strictly decreasing for x # m, then f ðxÞ . f ðmÞ $ m for all x , m. Thus,
if x0 [ ð0;mÞ, we have f ðx0Þ . m. Without loss of generality, x0 [ ½m;1Þ. Since f is

strictly increasing on the interval ½m;1Þ and f ðmÞ $ m, we may apply Theorem 2.9 to

obtain the conclusion that for every x0 [ ½m;1Þ, the solution f f nðx0Þ} converges to either
a fixed point of f or a positive prime period-two pair in this interval.

Case 3.3.1.1.2. Assume that f ðxÞ . x as x!1.

Note that if f has no fixed points, then f ðxÞ . for all x . 0. Clearly, for every x0 . 0,

the solution f f nðx0Þ} diverges to infinity. So assume that f has at least one fixed point, and

thus �xmax must exist.

Case 3.3.1.1.2.1. Assume that there is a value m, 0 , m , m, such that f ðmÞ ¼ �xmax.

Since f is strictly decreasing on ð0;m� and strictly increasing on ½m;1Þ, then the only

intervals in which f ðxÞ . �xmax are ð0;mÞ and ð�xmax;1Þ. Since f ðxÞ . x for x [ ð�xmax;1Þ,
then the solution ff nðx0Þ} diverges to infinity for x0 [ ð0;mÞS ð�xmax;1Þ. In the interval

½m; �xmax�, observe that the absolute maxima of f occur at m and �xmax, and the absolute

minimum of f occurs at m. Since f ðmÞ ¼ f ð�xmaxÞ and f ðmÞ $ m . m, then f ð½m; �xmax�Þ #
½m; �xmax� , ½m; �xmax�. Since f is strictly increasing on ½m; �xmax�; f ðmÞ $ m, and

f ð�xmaxÞ ¼ �xmax, then by Theorem 2.10, for every x0 [ ½m; �xmax�, the solution ff nðx0Þ}
converges either to a fixed point of f or to a prime period-two pair in this interval.

Case 3.3.1.1.2.2. Assume that there is no value m, 0 , m , m, such that f ðmÞ ¼ �xmax.

Since f is strictly increasing on ð�xmax;1Þ and f ðxÞ . x for x [ ð�xmax;1Þ, then the

solution ff nðx0Þ} diverges to infinity for every x0 [ ð�xmax;1Þ. Since f is strictly decreasing
on ð0;m� and there is no solution to f ðmÞ ¼ �xmax with 0 , m , m, then 0 , f ðxÞ , �xmax

for x [ ð0;m�. Since f is strictly decreasing on ð0;m� and f ðmÞ $ m, then f ðx0Þ [ ½m; �xmax�
for x0 [ ð0;mÞ. Thus, we only need to handle x0 [ ½m; �xmax�. Since f is strictly increasing

on ½m; �xmax�; f ðmÞ $ m, and f ð�xmaxÞ ¼ �xmax, then for every x0 [ ½m; �xmax�, the solution

ff nðx0Þ} converges to a fixed point of f in this interval by Theorem 2.10.

Case 3.3.1.2. Assume that f ðmÞ , m.
Figure 1 illustrates the graph of f for this case and, in particular, the Case 3.3.1.2.1.

Since f is strictly decreasing on the interval ð0;mÞ, there is exactly one fixed point of f ,
say �x, in the interval ð0;mÞ. Suppose that m1 exists (defined just before Case 3.3.1).

We claim that m1 , �x. We have f ðm1Þ ¼ m . �x ¼ f ð�xÞ. Since f is strictly decreasing on

the interval ð0;mÞ, then m1 , �x as claimed.

We also claim that any prime period-two point of f must lie in the interval ðm1;mÞ.
By assumption any prime period-two pair of f , ð�p1; �p2Þ and we choose �p1 , �p2, must

satisfy 0 , �p1 , �p2 , m. Since f is strictly decreasing on ð0;m�; 0 , m1 , m, and

f ðm1Þ ¼ m, then f ðxÞ $ m for x # m1. This shows that f ð�p1Þ ¼ �p2 , m implies �p1 . m1.

Thus, m1 , �p1 , �p2 , m, proving the claim.

Suppose m2 exists (defined just before Case 3.3.1). If f has any other fixed points

besides �x, we claim that they must lie in the interval ðm2;1Þ. Let �x0 . m denote any

another fixed point of f , if it exists. We have f ð�x0Þ ¼ �x0 . m ¼ f ðm2Þ. Since f is strictly

increasing on the interval ðm;1Þ, then we must have �x0 . m2 as claimed.

Case 3.3.1.2.1. There are exactly two positive values say x ¼ m1 and x ¼ m2 such that

f ðxÞ ¼ m, where we take m1 , m2.

We now consider the graph of f 2. Figure 2 illustrates the graph of f 2 for this case.
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Recall that f 2 has exactly three critical points at m;m1 and m2. Since f ðmÞ is the

absolute minimum value of f , then by the assumptions of Case 3.3.1.2.1, the absolute

minima of f 2 must occur exactly at m1 and m2 with f
2ðm1Þ ¼ f ðmÞ and f 2ðm2Þ ¼ f ðmÞ. The

remaining critical point m of f 2 must be a relative maximum for f 2. Thus f 2 is strictly

decreasing on the intervals ð0;m1� and ½m;m2�, and f 2 is strictly increasing on the intervals
½m1;m� and ½m2;1Þ.

We saw earlier that all of the fixed points of f 2 are greater than m1. Since f
2 is strictly

decreasing on ð0;m1� and f 2 has no fixed points in ð0;m1�, then f 2ðxÞ . x for x [ ð0;m1�.
Also note that f 2ðm2Þ ¼ f ðmÞ , m , m2. Let �x2 denote the smallest fixed point of f

besides �x. If �x2 does not exist, then define �x2 ¼ 1. We saw earlier that �x2 . m2. Since

f 2ðm2Þ , m2 and f 2 has no fixed points in the interval ½m; �x2Þ, then f 2ðxÞ , x for

x [ ½m; �x2Þ.
Let us summarize the properties of f 2 :

(i) f 2 is strictly decreasing on the intervals ð0;m1� and ½m;m2�.
(ii) f 2 is strictly increasing on the intervals ½m1;m� and ½m2;1Þ.
(iii) f 2 has absolute minima at x ¼ m1 and x ¼ m2, and f 2ðm1Þ ¼ f 2ðm2Þ ¼ f ðmÞ.
(iv) f 2 has a relative maximum at x ¼ m.
(v) The smallest positive fixed point of f occurs at x ¼ �x with m1 , �x , m , m2.

(vi) f 2ðxÞ . x for 0 , x # m1, and f 2ðxÞ , x for m # x , �x2 where �x2 is the

smallest fixed point of f that is greater than �x. If �x2 does not exist, then f ðxÞ , x

for all x $ m.
(vii) All of the positive fixed points of f besides �x, if any, occur in the interval

ðm2;1Þ.
(viii) All of the prime period-two pairs of f occur in the interval ðm1;mÞ.
Case 3.3.1.2.1.1. Assume that f ðxÞ . x as x!1.

Figure 1. Graph of y ¼ f (x).
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Since f ðmÞ , m and �x , m, then there must exist at least one other fixed point of f

greater than m. By property (vii), �xmax satisfies �xmax . m2. We claim that if m . 0 exists

(defined before the statement of Theorem 3.3), then m , m1. Since m , m2 , �xmax and

f is strictly increasing on ½m; �xmax�, then f ðm2Þ , f ð�xmaxÞ ¼ �xmax. Since 0 , m , m; 0 ,
m1 , m; f ðm1Þ ¼ m ¼ f ðm2Þ , f ð�xmaxÞ ¼ f ðmÞ, and f is strictly decreasing on ð0;m�, then
m , m1 as claimed.

We are first going to prove for the case m . 0 that if x0 [ ð0;mÞS ð�xmax;1Þ, the
solution ff nðx0Þ} diverges to infinity. Figure 2 illustrates Case 3.3.1.2.1.1 with m . 0.

For the case m ¼ 0, the result is that for x0 [ ð�xmax;1Þ, the solution ff nðx0Þ} diverges to

infinity. We will not give the proof for the case m ¼ 0, since it is a minor variation of the

argument for the case m . 0.

Since f is strictly decreasing on ð0;mÞ and f ðmÞ ¼ �xmax, then for every x0 [ ð0;mÞ,
we have f ðx0Þ [ ð�xmax;1Þ. Next, consider the case x0 [ ð�xmax;1Þ. But in the interval

ð�xmax;1Þ, f itself is strictly increasing. Since f has no fixed points greater than �xmax, then

f ðxÞ . x for x . �xmax. By the elementary graphic method of iteration, f nðx0Þ!1 as

n!1 for x0 [ ð�xmax;1Þ. This shows that for every x0 [ ð0;mÞS ð�xmax;1Þ, the solution
ff nðx0Þ} diverges to infinity.

So, we are left to deal with x0 [ ½m; �xmax�. Since the absolute minimum value of f is

f ðmÞ ¼ f 2ðm1Þ . m1, then f ðx0Þ . m1 for x0 [ ½m; �xmax�. In the interval ½m; �xmax�, f has

absolute minima at m1 and m2, and a relative maximum at m. Thus, the maximum value of

f in this interval occurs at either m;m, or �xmax. Since f 2ðmÞ ¼ f 2ð�xmaxÞ ¼ �xmax and

f 2ðmÞ , m , �xmax, then f ðxÞ # �xmax for x [ ½m; �xmax�. Thus, f ð½m; �xmax�Þ # ½m; �xmax�.
Next, we show that for every x0 [ ½m; �xmax�, the solution f 2nðx0Þ converges to a fixed

point of f 2 in this interval. Since the absolute minimum value of f 2 is f 2ðm1Þ . m1,

then we can assume x0 [ ½m1; �xmax�. Consider the case x0 [ ½�x2; �xmax�. Since f 2ð�x2Þ ¼

Figure 2. Graph of y ¼ f ( f (x)).
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�x2; f
2ð�xmaxÞ ¼ �xmax and f

2 is strictly increasing on the interval ½�x2; �xmax�, by Theorem 2.10

the solution ff 2nðx0Þ} converges to a fixed point of f 2 in this interval. Next, suppose that

x0 [ ½m; �x2Þ. Since f 2ðxÞ , x in this interval, then for k sufficiently large we have

f 2kðx0Þ # m. So, we are left to consider x0 [ ½m1;m�. Since f 2ðm1Þ . m1; f
2ðmÞ , m, and

f 2 is strictly increasing on the interval ½m1;m�, then by Theorem 2.10 we have f 2nðx0Þ
converges to a fixed point in this interval. So we have shown that for every x0 [ ½m; �xmax�,
f 2nðx0Þ converges to a fixed point of f 2 in this interval. Since f ð½m; �xmax�Þ # ½m; �xmax�, by
Lemma 2.8(c), for every x [ ½m; �xmax�, f nðx0Þ converges to a fixed point of f or to a prime

period-two pair of f in this interval.

We point out that if m does not exist, then the proof is similar to the proof above and

even somewhat simpler, and we dispense with the details.

Case 3.3.1.2.1.2. Assume that f ðxÞ , x as x!1.

First suppose that x0 [ ð0;m1�. Since the absolute minimum of f 2 is f 2ðm1Þ . m1, then

f 2ðx0Þ $ m1. So we can assume that x0 [ ½m1;1Þ. Define �x2 to be the smallest fixed point

of f besides �x, if it exists. If �x does not exist, take �x ¼ 1. Consider the case x0 [ ½�x2;1Þ.
We showed earlier that �x2 . m2 . m. The function f itself is strictly increasing on the

interval ½�x2;1Þ. Since f ð�x2Þ ¼ �x2 and f ðxÞ , x as x!1, by Theorem 2.9, the solution

ff nðx0Þ} converges to a fixed point of f 2 in the interval ½�x2;1Þ.
We are left to handle the case x0 [ ½m1; �x2Þ. By the same argument as in Case

3.3.1.2.1.1, the solution ff 2nðx0Þ} converges to a fixed point in this interval. We have now

shown that ff 2nðx0Þ} converges to a fixed point of f 2 for every x0 . 0. Since 0 is not a

fixed point of f 2 (f 2 is strictly decreasing on ð0;m1�), then by Lemma 2.8(b), for every

x0 . 0, the solution ff nðx0Þ} converges either to a positive fixed point of f or to a positive
prime period-two pair of f .

Case 3.3.1.2.2. There is exactly one positive solution to f ðxÞ ¼ m, say x ¼ m1, and

consider the case m1 , m.
This is a somewhat simpler case than Case 3.3.1.2.1 with many of the same arguments

in the proof. Similar to Case 3.3.1.2.1, one can show that f 2 has the following properties:

(i) f has exactly one fixed point �x and m1 , �x , m.
(ii) Any prime period-two points of f must lie in the interval ðm1;mÞ.
(iii) f 2 has an absolute minimum at m1.

(iv) f 2 is strictly decreasing on the interval ð0;m1�.
(v) f 2 is strictly increasing on the interval ½m1;m�.
(vi) f 2ðxÞ . x for 0 , x # m1 and f 2ðxÞ , x for x $ m.

We claim that for every x0 . 0, solution ff 2nðx0Þ} converges to a fixed point of f 2.

First consider the case x0 [ ð0;m1�. Since the absolute minimum value of f is

f ðmÞ ¼ f 2ðm1Þ . m1, then we are reduced to considering the case x0 [ ðm1;1Þ. First,
examine when x0 is in the subinterval ½m;1Þ. Since f 2ðxÞ , x for x [ ½m;1Þ, then for k

sufficiently large we have f 2kðx0Þ # m. So we are left dealing with x0 [ ½m1;m�. Since f 2
is strictly increasing in this interval, f 2ðm1Þ . m1, and f 2ðmÞ , m, then by Theorem 2.10

every solution ff 2nðx0Þ} must converge to a fixed point of f 2 in this interval. Similar to the

argument in Case 3.3.1.2.1.2, for every x0 . 0, the solution ff nðx0Þ} converges either to a
fixed point of f or prime period-two pair of f in the interval ½m1;m�.

Case 3.3.1.2.3. There is exactly one positive solution to f ðxÞ ¼ m, say x ¼ m2, and

m , m2.

Since f ðmÞ ¼ f 2ðm2Þ is the absolute minimum value of f 2 and m is the only other

critical point of f 2, then f 2 is strictly decreasing on the interval ½m;m2� and strictly

increasing on ½m2;1Þ. Since f ðmÞ , �x , m and f is strictly decreasing on ð0;m�, then
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f 2ðmÞ . f ð�xÞ ¼ f 2ð�xÞ. Thus, f 2 is strictly increasing on ð0;m�. Since there is no x-value

where f ðxÞ ¼ m for x , m, then f ðxÞ , m for all 0 , x , m. Since f is strictly decreasing

on ð0;m�, then limx!0 f ðxÞ ¼ a for some finite positive value of a. Thus, f can be extended

to be continuous at 0. This means that f 2 is also continuous at 0, and note that

limx!0 f
2ðxÞ ¼ limx!a f ðxÞ ¼ f ðaÞ . 0.

We sum up the properties of f 2:

(i) In the interval ð0;mÞ, f has exactly one fixed point �x.

(ii) If f has any more fixed points �x0 besides �x, then �x0 . m2.

(iii) Any prime period-two point of f must lie in the interval ð0;mÞ.
(iv) f 2 has a relative maximum at m and an absolute minimum at m2 with

f 2ðm2Þ ¼ f ðmÞ.
(v) f 2 is strictly decreasing on the interval ½m;m2�.
(vi) f 2 is strictly increasing on the intervals ð0;m� and ½m2;1Þ.
(vii) f 2ðxÞ , x for x [ ½m; �x2Þ, where �x2 is the smallest fixed point such that �x2 . �x.

If �x2 does not exist, then f 2ðxÞ , x for all x [ ½m;1Þ.
(viii) f 2 can be extended to be continuous at 0 and f 2ð0Þ . 0.

Case 3.3.1.2.3.1. Suppose that f ðxÞ . x as x!1.

By the same reasoning as in Case 3.3.1.2.1.1, there exists �xmax . m such that �xmax is a

fixed point of f ; f ðxÞ . x for all x . �xmax, and f is strictly increasing on ½�xmax;1Þ.
By Theorem 2.9, for every x0 [ ð�xmax;1Þ, the solution f f nðx0Þ} diverges to infinity.

Clearly, f ð�xmaxÞ ¼ �xmax. So we are left to deal with the case x0 [ ð0; �xmaxÞ. If we can show
that f f nðx0Þ} converges to either a positive fixed point of f or a positive prime period-two

pair of f for every x0 [ ð0; �xmaxÞ, then we will be done with Case 3.3.1.2.3.1. Before we

prove this, first consider the other case when f ðxÞ , x as x!1.

Case 3.3.1.2.3.2. Suppose that f ðxÞ , x as x!1.

If there exists a fixed point of f . m, then �xmax . m must exist. Since f is strictly

increasing on ½�xmax;1Þ, then by Theorem 2.9 the solution f f nx0� converges to �xmax for

every x0 [ ½�xmax;1Þ. If �xmax does not exist, then choose �xmax ¼ 1. We are left to show

that f nðx0Þ converges to either a fixed point of f or a positive prime period-two pair of f for

every x0 [ ð0; �xmaxÞ.
Thus, Cases 3.3.1.2.3.1 and 3.3.1.2.3.2 reduce to considering when x0 [ ð0; �xmaxÞ.

The first half of the proof will be the same for both cases to handle these initial values.

Define �x2 to be the smallest fixed point of f besides �x, if it exists. If �x2 does not exist,

choose �x2 ¼ 1. By property (ii), �x2 . m2 . m. Suppose x0 [ ½�x2; �xmax�. Note that if

�x2 ¼ �xmax or �x2 ¼ 1, then there is nothing to do. Since f is strictly increasing on this

interval, by Theorem 2.10, the solution ff nðx0Þ} converges to a fixed point of f in this

interval. We are left dealing with the case x0 [ ð0; �x2Þ. Since f 2ðxÞ , x for x [ ½m; �x2Þ by
property (vii), then for k sufficiently large we have f 2kðx0Þ # m. So, we are reduced to

considering x0 [ ð0;m�. Since f 2 is strictly increasing and continuous on the interval

½0;m�; f 2ð0Þ . 0, and f 2ðmÞ , m, then by Theorem 2.10, for every x0 [ ð0;m�, the

solution f f 2nðx0Þ} converges to a fixed point of f 2 in this interval. We have shown that for

every x0 [ ð0; �xmax�, the solution ff 2nðx0Þ} converges to a fixed point in this interval.

Suppose �xmax , 1. Since the only critical points of f 2 in the interval ½0; �xmax� are m
and m2, and f 2ðm2Þ is the absolute minimum value of f 2, then the maximum value of f 2

occurs at either 0;m, or �xmax. However, f
2 is strictly increasing on ½0;m�, so that we only

have to consider m or �xmax. Note that f 2ðmÞ , m , �xmax. Thus, the absolute maximum

value of f 2 in the interval ½0; �xmax� is f 2ð�xmaxÞ ¼ �xmax. Thus, f ð½0; �xmax�Þ # ½0; �xmax�.
Since f 2 can be extended to be continuous at 0 and f 2ð0Þ . 0, then by Lemma 2.8(a), for
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every x0 [ ð0; �xmax�, the solution ff nðx0Þ} converges either to a positive fixed point of f or
to a positive prime period-two pair of f . In the event that �xmax ¼ 1, we can invoke Lemma

2.8(b) to obtain the result that for every x0 [ ð0;1Þ, the solution ff nðx0Þ} converges either
to a positive fixed point of f or to a positive prime period-two pair of f .

Case 3.3.1.2.4. There are no positive solutions to f ðxÞ ¼ m.
Since f is continuous and f ðmÞ , m, then f ðxÞ , m for all x . 0. Suppose

0 , x1 , x2 , m. Since f is strictly decreasing in the interval ð0;m�, we have

m . f ðx1Þ . f ðx2Þ, and so f 2ðx1Þ , f 2ðx2Þ. Thus, f 2 is strictly increasing on the interval

ð0;m�. With a similar argument, one can show that f 2 is strictly decreasing on the interval

½m;1Þ. This implies that f 2 has an absolute maximum at m, and since the absolute

maximum value of f is less than m, then f 2ðmÞ , m. Since f 2 is strictly decreasing in the

interval ½m;1Þ and f 2ðmÞ , m, then f 2ðxÞ , x for all x [ ½m;1Þ.
We claim that every solution converges to a fixed point of f 2. First consider the case

x0 [ ½m;1Þ. We have f 2ðx0Þ , m. Thus, we are left with the case x0 [ ð0;m�. By the same

argument as in Case 3.3.1.2.3, one shows that f 2 can be extended to be continuous at 0 and

f 2ð0Þ . 0. Since f 2 is strictly increasing in the interval ½0;m�; f 2ð0Þ . 0 and f 2ðmÞ , m,
then by Theorem 2.10 every solution ff 2nðx0}Þ must converge to a positive fixed point

of f 2.

By Lemma 2.8(b), for every x0 . 0, the solution ff nðx0Þ} converges either to a positive
fixed point of f or to a positive prime period-two pair of f .

Case 3.3.2. The unique relative extreme point of f , at say x ¼ m, is a relative maximum

with m . 0.

Since f has exactly one critical point at x ¼ m and it is a relative maximum, then f is

strictly increasing for x # m and strictly decreasing for x $ m. This implies that f has an

absolute maximum at x ¼ m. Since f is strictly increasing and continuous on ð0;m�, then
limx!0 f ðxÞ $ 0 exists and is finite. Thus, we can extend f to be continuous on ½0;1Þ.

Suppose first that f ðmÞ , m. Note that f ðxÞ , m for all x . 0. Suppose x0 [ ½m;1Þ.
We have f ðx0Þ , m. So, we are left with the case x0 [ ð0;m�. Since f is strictly increasing
in the interval ½0;m�, f ð0Þ $ 0 and f ðmÞ , m, then by Theorem 2.10 every solution

ff nðx0Þ} must converge to a fixed point of f in the interval ½0;m�.
So, we now need to consider the case when f ðmÞ . m, which is the main case.

Since f is strictly decreasing on the interval ½m;1Þ and f ðmÞ . m, then there is exactly
one fixed point of f , say �x in the interval ðm;1Þ. Suppose that m2 exists (defined just before

Case 3.3.1). We claim that �x , m2. We have f ð�xÞ ¼ �x . m ¼ f ðm2Þ. Since f is strictly

decreasing on the interval ðm;1Þ, then �x , m2 as claimed.

We also claim that any prime period-two point of f must lie in the interval ðm;m2Þ.
By assumption any prime period-two pair of f , ð�p1; �p2Þ and we choose �p1 , �p2, must

satisfy m , �p1 , �p2. Since f is strictly decreasing on ½m;1Þ;m , m2 and f ðm2Þ ¼ m, then
f ðxÞ , m for x [ ½m2;1Þ. This implies �p2 , m2 since f ð�p2Þ ¼ �p1 . m. Thus, m , �p1 ,

�p2 , m2 as claimed.

Suppose m1 exists (defined just before Case 3.3.1). If f has any other fixed points

besides �x, we claim that they must lie in the interval ½0;m1Þ. Let �x0 , m denote any other

fixed point of f , if it exists. We have f ð�x0Þ ¼ �x0 , m ¼ f ðm1Þ. Since f is strictly increasing

on the interval ½0;mÞ, then we must have �x0 , m1 as claimed.

Since f can be extended to be continuous at 0, by Lemma 2.8(e), we conclude that for

every x0 . 0 the solution ff nðx0Þ} converges to either a non-negative fixed point of f or a

positive prime period-two pair of f if and only if f 2nðx0Þ converges to a fixed point of f 2.

So, we only need to consider the convergence properties of f 2. We also point out that since
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f can be extended to be continuous on ½0;1Þ, then f 2 can also be extended to be

continuous on ½0;1Þ.
Case 3.3.2.1. There are exactly two values m1 , m , m2 such that f ðm1Þ ¼ f ðm2Þ ¼ m.
Since f ðmÞ is an absolute maximum of f , then the absolute maxima of f 2 occur at m1

and m2. Since m1 , m , m2 and these are the only critical values, then the critical value

x ¼ mmust give a relative minimum for f 2. Since all of the fixed points of f 2 are less than

m2 and f
2 is bounded, then f 2ðxÞ , x for x [ ½m2;1Þ. Note that f 2ðm1Þ ¼ f ðmÞ . m . m1.

Since f 2ðm1Þ . m1 and f 2 has no fixed points in the interval ½m1;m�, then f 2ðxÞ . x for

x [ ½m1;m�.
Let us summarize the properties of f 2:

(i) We have the relationships m1 , m , �x , m2.

(ii) f 2 is strictly increasing on the intervals ½0;m1� and ½m;m2�, and strictly

decreasing on the intervals ½m1;m� and ½m2;1Þ.
(iii) f has exactly one fixed point �x that satisfies m , �x , m2.

(iv) Any other fixed point of f besides �x lies in the interval ½0;m1Þ.
(v) Any prime period-two point of f lies in the interval ðm;m2Þ.
(vi) f 2 has absolute maxima at m1 and m2, and a relative minimum at m.
(vii) f 2ðxÞ . x for x [ ½m1;m� and f 2ðxÞ , x for x [ ½m2;1Þ.
(viii) f 2 can be extended to be continuous on ½0;1Þ.
We claim that for every x0 . 0, the solution ff 2nðx0Þ} converges to a fixed point of f 2.

First, suppose x0 [ ½m2;1Þ. Since f 2ðm2Þ , m2 is the absolute maximum value of f 2, then

f 2ðx0Þ [ ½0;m2�. So we are left to deal with x0 [ ½0;m2�. Let �xN denote the largest fixed

point of f besides �x if it exists. Consider the case x0 [ ð0; �xN� and we point out that

�xN , m1 by property (iv). Since f 2 is strictly increasing on the interval ½0; �xN�; f 2ð0Þ $ 0

and f 2ð�xNÞ ¼ �xN , then by Theorem 2.10 every solution ff 2nðx0Þ} converges to a fixed point
of f 2 in the interval ½0; �xN�. Next, consider the case x0 [ ð�xN ;mÞ and take �xN ¼ 0 if f has

no other fixed point besides �x. Since there are no fixed points of f 2 on the interval ð�xN ;m�
and f 2ðmÞ . m, then f 2ðxÞ . x for x [ ð�xN ;m�. Thus, there exists k sufficiently large

so that f 2kðx0Þ $ m. Since f 2ðm2Þ , m2 is the absolute maximum value of f 2, then

m # f 2kðx0Þ # m2. So, we are left to consider the case x0 [ ½m;m2�. Since f 2 is strictly

increasing on this interval, f 2ðmÞ $ m and f 2ðm2Þ , m2, then by Theorem 2.10, every

solution ff 2nðx0Þ} converges to a fixed point of f 2 in this interval.

Case 3.3.2.2. Assume there is a unique value m1 such that f ðm1Þ ¼ m and consider the

case m1 , m.
Since f ðmÞ is the absolute maximum of f , then the unique absolute maximum of f 2

occurs at m1. Observe that ðf 2Þ0ð�xÞ ¼ f 0ðf ð�xÞÞf 0ð�xÞ ¼ ½f 0ð�xÞ�2 . 0. Since m1 and m are the

only critical values of f 2, f 2 has an absolute maximum at m1; ðf 2Þ0ð�xÞ . 0 and

m1 , m , �x, we conclude that f 2 must have a relative minimum at m. Thus, f 2 is strictly
increasing on the intervals ½0;m1� and ½m;1Þ, and strictly decreasing on the interval

½m1;m�. Let �xN denote the largest fixed point of f besides �x. If �x is the only fixed point of f ,

then take �xN ¼ 0.

By the same argument as in Case 3.3.2.1, we have f 2ðxÞ . x for x [ ð�xN ;m�. Since the
absolute maximum value of f 2 is f 2ðm1Þ , 1, then f 2ðxÞ , x as x!1.

Let us summarize the properties of f 2:

(i) f 2 is strictly increasing on the intervals ½0;m1� and ½m;1Þ, and strictly decreasing
on the interval ½m1;m�.

(ii) f has exactly one fixed point �x that satisfies �x . m.
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(iii) Any other fixed point of f lies in the interval ½0;m1Þ.
(iv) Any prime period-two point of f lies in the interval ðm;1Þ.
(v) f 2ðxÞ . x for x [ ð�xN ;m� and f 2ðxÞ , x as x!1.

(vi) f 2 can be extended to be continuous on ½0;1Þ.
We claim that for every x0 . 0, the solution ff 2nðx0Þ} converges to a fixed point of f 2.

First, consider the case x0 [ ð0; �xN�. By properties (i) and (iii), f 2 is strictly increasing in

this interval. We also have f 2ð0Þ $ 0 and f 2ð�xNÞ ¼ �xN . By Theorem 2.10, every solution

ff 2nðx0Þ} converges to a fixed point of f 2 in the interval ½0; �xN�. Next, consider the case

x0 [ ð�xN ;m�. Since f 2ðxÞ . x for x [ ð�xN ;m�, then for k sufficiently large we have

f 2kðx0Þ $ m. Thus, we are only left to consider x0 [ ½m;1Þ. Since f 2 is strictly increasing
in this interval, f 2ðmÞ . m and f 2ðxÞ , x as x!1, then by Theorem 2.9 every solution

ff 2nðx0Þ} converges to a fixed point of f 2 in this interval.

Case 3.3.2.3. Assume there is a unique value m2 such that f ðm2Þ ¼ m and consider the

case m2 . m.
Since f ðmÞ is the absolute maximum of f , then the unique maximum of f 2 occurs at m2.

Since f ðmÞ . m and there is no value of x such that f ðxÞ ¼ m with 0 # x , m, then
f ðxÞ . m for all x [ ½0;m�. Thus, f has no fixed point in the interval ½0;m�. By assumption,

there are no prime period-two points of f in the interval ½0;m�. Since there are no fixed

points for f 2 in the interval ½0;m� and f ð0Þ . m, then f 2ðxÞ . x for x [ ½0;m�. Since
f 2ðm2Þ is the unique absolute maximum value of f 2, and m and m2 are the only critical

values of f 2, then f 2 is strictly increasing in the interval ½m;m2�. It also follows that since

f 2ðm2Þ is the absolute maximum of f 2 and there are no critical values greater than m2, then

f 2 is strictly decreasing on the interval ½m2;1Þ. Since f 2 is bounded and has no fixed point
in the interval ½m2;1Þ, then f 2ðxÞ , x for x [ ½m2;1Þ.

Let us summarize the properties of f 2:

(i) f 2 is strictly increasing on the interval ½m;m2� and strictly decreasing on the

interval ½m2;1Þ.
(ii) f has exactly one fixed point �x and it satisfies m , �x , m2.

(iii) Any prime period-two point of f lies in the interval ðm;m2Þ.
(iv) f 2ðxÞ . x for x [ ½0;m� and f 2ðxÞ , x for x [ ½m2;1Þ.
We claim that for every x0 . 0, the solution ff 2nðx0Þ} converges to a fixed point of f 2.

First, suppose x0 [ ½m2;1Þ. Since f 2ðm2Þ , m2 is the absolute maximum of f 2, then

f 2ðx0Þ [ ½0;m2�. Next suppose x0 [ ½0;m�. Since f 2ðxÞ . x for x [ ½0;m� and the

absolute maximum value of f 2 is less than m2, then for k sufficiently large we have

f 2kðx0Þ [ ½m;m2�. We are left to consider the case x0 [ ½m;m2�. Since f 2 is strictly

increasing in this interval, f 2ðmÞ . m and f 2ðm2Þ , m2, then by Theorem 2.10 every

solution ff 2nðx0Þ} converges to a fixed point of f 2 in this interval.

Case 3.3.2.4. Assume there is no value x such that f ðxÞ ¼ m.
Similar to the arguments in Case 3.3.1.2.4, we have f 2 is strictly decreasing in the

interval ½0;m� and strictly increasing in the interval ½m;1Þ. Since there is no x-value such

that f ðxÞ ¼ m and f ðmÞ . m, then for all x [ ½0;m� we have f ðxÞ . m. Thus, there are no
fixed points of f in the interval ½0;m�. Since f is strictly decreasing on ðm;1Þ and

f ðmÞ . m, then there must exist exactly one fixed point �x of f in this interval. We conclude

that f has exactly one fixed point in ½0;1Þ. By assumption, f has no prime period-two

points in the interval ½0;m�. Since f 2 is strictly decreasing on ½0;m�, and has no fixed point
in this interval, then f 2ðxÞ . x for x [ ½0;m�. From the fact that the absolute maximum

value of f 2 is f ðmÞ, we conclude that f 2ðxÞ , x as x!1.
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Let us summarize the properties of f 2:

(i) f 2 is strictly decreasing on the interval ½0;m� and strictly increasing on the

interval ½m;1Þ.
(ii) f has exactly one fixed point �x and it satisfies �x . m.
(iii) Any prime period-two point of f lies in the interval ðm;1Þ.
(iv) f 2ðxÞ . x for x [ ½0;m� and f 2ðxÞ , x as x!1.

We claim that for every x0 . 0, the solution f f 2nðx0Þ} converges to a fixed point of f 2.
First, suppose x0 [ ð0;mÞ. Since f 2ðxÞ . x for x [ ½0;m�, then for k sufficiently large we

have f 2kðx0Þ $ m. We are left to deal with the case x0 [ ½m;1Þ. Since f 2 is strictly

increasing in this interval, f 2ðmÞ . m and f 2ðxÞ , x as x!1, then by Theorem 2.9, every

solution f f 2nðx0Þ} converges to a fixed point of f 2 in the interval ½m;1Þ. A

4. Applications to rational difference equations

In this section, we consider all difference equations of the form

xnþ1 ¼ Ax2n þ Bxn þ C

ax2n þ bxn þ g
ð2Þ

with non-negative parameters A;B;C;a;b and g. We will find necessary and sufficient

conditions on the parameters and positive initial values for convergence of solutions of this

equation. Any case that reduces to the form xnþ1 ¼ ðDxn þ EÞ=ðdxn þ eÞ will not be

addressed, since the convergence properties of this difference equation are known.

All cases of this type are covered in a book by Camouzis and Ladas [3] in Appendix

A. The relevant difference equations are numbered (17), (23), (41), (42) and (65) in

Appendix A. We will also not cover the case when xnþ1 ¼ Ax2n þ Bxn þ C, as the

convergence properties of this case are well known.

Theorem 4. The solutions of the difference equation (2) above converge either to a fixed

point of f or to a prime period-two pair of f for every non-negative choice of the

parameters and every choice of positive initial values, with the following exceptions:

(a) Suppose A ¼ 0;B . 0;C . 0;a . 0;b , aC=B and g ¼ 0. Let �x denote the

unique positive fixed point of f that is a root of the equation

a�x3 þ b�x2 2 B�x2 C ¼ 0. Then for every x0 [ ð0; �xÞ the solutions f 2nðx0Þ! 0

and f 2nþ1ðx0Þ!1 as n!1. For every x0 [ ð�x;1Þ the solutions f 2nðx0Þ!1
and f 2nþ1ðx0Þ! 0 as n!1.

(b) Suppose A ¼ 0; B ¼ 0; C . 0; a . 0 and g ¼ 0. Let �x denote the unique

positive fixed point of f which is a root of a�x3 þ b�x2 2 C ¼ 0. Then for every

x0 [ ð0; �xÞ the solutions f 2nðx0Þ! 0 and f 2nþ1ðx0Þ!1 as n!1. For every

x0 [ ð�x;1Þ the solutions f 2nðx0Þ!1 and f 2nþ1ðx0Þ! 0 as n!1.

(c) Suppose that A . b . 0 anda ¼ 0. Also assume that either ðg2 BÞ2 , 4ðA2 bÞC
or B $ g. In this case, for every x0 . 0, the solution f nðx0Þ!1 as n!1.

(d) Suppose that A . b . 0;a ¼ 0; ðg2 BÞ2 $ 4ðA2 bÞC and B , g.
Let �xmax denote the largest fixed point of f which equals

�xmax ¼ g2 Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 BÞ2 2 4ðA2 bÞC

p
2ðA2 bÞ :
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If x0 [ ð0; �xmax�, then the solution ff nðx0Þ} converges to a fixed point of f .

If x0 [ ð�xmax;1Þ then the solution f nðx0Þ!1 as n!1.

(e) Suppose that A ¼ b . 0;a ¼ 0, and either B . g or both B ¼ g and C . 0.

Then for every x0 . 0, the solution f nðx0Þ!1 as n!1.

Proof.

Case 4.1. Assume that A . 0 and a . 0.

By the change of variables xn ! Axn=a, we can assume A ¼ a ¼ 1. Equation (2) can

be expressed in the form:

xnþ1 ¼ x2n þ Bxn þ C

x2n þ bxn þ g
; f ðxnÞ: ð3Þ

We can also assume that C and g are not both zero, since otherwise the difference

equation reduces to the well-known linear case in numerator and denominator.

We calculate the derivative of f ðxÞ :

f 0ðxÞ ¼ ðb2 BÞx 2 þ 2ðg2 CÞxþ Bg2 Cb

ðx2 þ bxþ gÞ2 : ð4Þ

Setting the derivative of f ðxÞ equal to zero, we find that the critical values must satisfy

ðb2 BÞx2 þ 2ðg2 CÞxþ Bg2 Cb ¼ 0: ð5Þ

We claim that f has at most one positive critical value, as we now show breaking the

argument up into Cases a, b and c.

Case a. Suppose b2 B . 0.

A necessary condition for two positive solutions to equation (5) is g2 C , 0 and

Bg2 Cb . 0. However, b . B and g , C imply Bg , Cb.
Case b. Suppose b2 B , 0.

A necessary condition for two positive solutions to equation (5) is g2 C . 0 and

Bg2 Cb , 0. However, b , B and g . C imply Bg . Cb.
Case c. Suppose b2 B ¼ 0.

If b2 B ¼ 0, then equation (5) clearly has at most one root.

We next claim that if f has no relative extreme point, then every solution converges

either to a fixed point or to a positive prime period-two pair of f . For if f has no relative

extreme point, then f must be strictly increasing or strictly decreasing for all x . 0. First

consider the case that f is strictly increasing. Inspecting equation (5), we obviously must

have g . 0. This then implies that f is bounded and so f ðxÞ , x as x!1. Since f is

strictly increasing, we can extend f so that it is continuous at the origin and f ð0Þ $ 0.

By Theorem 2.9, for every x0 . 0, the solution ff nðx0}Þ converges to a fixed point of f .

Next, consider the case f is strictly decreasing. Observe that limx!1 f ðxÞ ¼ 1. By Theorem

3.1, the solution ff nðx0Þ} converges to either the unique fixed point of f or a positive prime

period-two pair of f .

We now consider the main case that there is exactly one relative extreme point for f .

We first investigate the number of fixed points of f . It is easy to check that any fixed point
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�x of f must be a root of the equation

gð�xÞ ; �x3 þ ðb2 1Þ�x 2 þ ðg2 BÞ�x2 C ¼ 0: ð6Þ
If C ¼ 0, then clearly �x ¼ 0 is a fixed point. If C . 0, then there is certainly at least

one positive fixed point since gð0Þ ¼ 2C and gðxÞ . 0 for x sufficiently large. Since gð�xÞ is
a cubic, then there are at most three fixed points. Recall that f ðxÞ , x as x!1. If f has no

prime period-two pair, then by Theorem 3.3, for every x0 . 0 the solution ff nðx0Þ}
converges to a fixed point of f .

So, we are left to deal with the situation that f has exactly one critical point that gives a

relative extreme point, and f has at least one prime period-two pair.

From equation (3), we see that any prime period-two pair must satisfy both of the

following two equations:

�p2 ¼ �p21 þ B�p1 þ C

�p21 þ b�p1 þ g

and

�p1 ¼ �p22 þ B�p2 þ C

�p22 þ b�p2 þ g
:

After some algebraic manipulation, one can show that

�p1 þ �p2 ¼ C 2 ðBþ gÞðbþ 1Þ
gþ bþ 1

: ð7Þ

Observe that since f [ Cðð0;1Þ £ ð0;1ÞÞ, then by Lemma 2.7, any prime period-two

pair of f must be a positive prime period-two pair. If there is a positive prime period-two

pair, obviously it must satisfy

maxð�p1; �p2Þ , C 2 ðBþ gÞðbþ 1Þ
gþ bþ 1

: ð8Þ

This shows that a necessary condition to obtain a positive prime period-two pair is that

C . ðBþ gÞðbþ 1Þ: ð9Þ
In the remainder of the proof of Theorem 4, denote the unique positive critical value of

f by m.
Case 4.1.1. Assume that b . B.

Since we are dealing with the case that there is at least one prime period-two pair, then

from equation (9) we see that C . g. Observe that Bg , Cb. From equation (4), we see

that f 0ðxÞ , 0 for x sufficiently small and f 0ðxÞ . 0 for x sufficiently large. Thus, the

critical value at m gives a relative minimum for f . Observe that limx!1 f ðxÞ ¼ 1 so that

f ðxÞ , x as x!1. We will be able to use Theorem 3.3 to conclude that every solution

f nðx0Þ will converge to a positive fixed point or positive prime period-two pair of f as long

as we show that every prime period-two point of f is less than m.
Let m0 # 0 be the other root of equation (5). Then we have

mþ m0 ¼ 2ðC 2 gÞ
b2 B

: ð10Þ
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This implies

m $
2ðC 2 gÞ
b2 B

: ð11Þ

By equations (8) and (11), it is sufficient to show

C 2 ðBþ gÞðbþ 1Þ
gþ bþ 1

#
2ðC 2 gÞ
b2 B

: ð12Þ

Thus, we only need to show that

½C 2 ðBþ gÞðbþ 1Þ�ðb2 BÞ # 2ðC 2 gÞðgþ bþ 1Þ:

This is equivalent to showing

Cð2gþ bþ Bþ 2Þ $ 2gðgþ bþ 1Þ þ ðB2 bÞðBþ gÞðbþ 1Þ:

Since C . ðBþ gÞðbþ 1Þ, it is sufficient if

ðBþ gÞðbþ 1Þð2gþ bþ Bþ 2Þ $ 2gðgþ bþ 1Þ þ ðB2 bÞðBþ gÞðbþ 1Þ;

which reduces to

2ðgþ bþ 1Þ½bðgþ BÞ þ B� $ 0;

and this inequality is clearly true.

Case 4.1.2. Assume that b , B.

Recall that equation (9) implied that g2 C , 0. From equation (5), we see that we

must have Bg2 Cb . 0 in order for there to be a relative extreme point. This implies that

g . 0. In equation (3), make the change of variables yn ¼ C=ðgxnÞ. Equation (3) can be

rewritten in the form

ynþ1 ¼ hðynÞ ; y2n þ Cbyn=g
2 þ C 2=g3

y2n þ Byn=gþ C=g2
: ð13Þ

Since both C . 0 and g . 0, observe that 0 is not a fixed point of h. Thus, �x . 0 is a

fixed point of f if and only if C=ðg�xÞ is a positive fixed point of h. Similarly, ð�p1; �p2Þ is
a positive prime period-two pair of f if and only if ðC=ðg�p1Þ;C=ðg�p2ÞÞ is a positive prime

period-two pair of h. If h is a monotone function, then by Theorem 2.9 or Theorem 3.1, for

every y0 . 0, the solution fhnðy0Þ} converges to either a positive fixed point or positive

prime period-two pair of h. By continuity, choosing y0 ¼ C=ðgx0Þ, for every x0 . 0 the

solution ff nðx0Þ} converges to either a positive fixed point of f or positive prime period-

two pair of f . If h is not monotone, then it must have exactly one critical value that is a

relative extreme point. Since Bg . Cb, then B=g . Cb=g2. Thus, we are back in Case

4.1.1. By that case, for every y0 . 0, the solution fhnðy0Þ} must converge to either a

positive fixed point or positive prime period-two pair of h. Once again by continuity, for

every x0 . 0, the solution ff nðx0Þ} converges to either a positive fixed point of f or

positive prime period-two pair of f .

Case 4.2. Assume that A ¼ 0;B . 0, and a . 0.
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After the change of variables xn ! xn
ffiffiffiffiffiffiffiffiffi
B=a

p
, we can assume that B ¼ 1 and a ¼ 1. So,

the difference equation has the form

xnþ1 ¼ xn þ C

x2n þ bxn þ g
; f ðxnÞ: ð14Þ

It is easy to check that any prime period-two pair ð�p1; �p2Þ are roots of the equation

gx2 þ ½bð1þ gÞ2 C�xþ g ð1þ gÞ ¼ 0: ð15Þ
If g . 0, in order for these two roots to be positive, it is necessary and sufficient that

C . bð1þ gÞ ð16Þ
and

½C 2 bð1þ gÞ�2 . 4g2ð1þ gÞ: ð17Þ
If g ¼ 0, then there are no prime period-two pairs. Since

f 0ðxÞ ¼ 2x2 2 2Cxþ g2 bC

ðx2 þ bxþ gÞ2 ; ð18Þ

any critical value must be a root of the equation

2x2 2 2Cxþ g2 bC ¼ 0: ð19Þ
Also note that f ðxÞ , x as x!1.

Case 4.2.1. Assume that g2 bC # 0.

In this case, f is strictly decreasing. If g . 0, then limx!0 f ðxÞ ¼ C=g , 1.

By Theorem 3.1, for every x0 . 0 the solution f nðx0Þ converges either to a fixed point of f
or to a positive prime period-two pair of f . If g ¼ 0 and C ¼ 0, the difference equation

reduces to the well-known case f ðxÞ ¼ 1=ðxþ bÞ. If g ¼ 0 and C . 0, then a

straightforward calculation shows that limx!0 f
2ðxÞ=x ¼ b=C. If g ¼ 0 and b . C . 0,

then by Theorem 3.1 for every x0 . 0 the solution f nðx0Þ converges to either a fixed point
or a positive prime period-two pair of f . If g ¼ 0 and b ¼ C . 0, then f ðxÞ ¼ 1=xwhich is
well known. We saw earlier that f has no prime period-two pair when g ¼ 0. Let �x denote

the unique positive fixed point of f . If g ¼ 0;C . 0 and b , C, by Theorem 3.1, for

0 , x0 , �x we have f 2nðx0Þ! 0 and f 2nþ1ðx0Þ!1 as n!1. When �x , x0 , 1 we

have f 2nðx0Þ!1 and f 2nþ1ðx0Þ! 0 as n!1. Obviously if x0 ¼ �x, then that is just a

fixed point of f . Recall that we made the change of variables xn ! xn
ffiffiffiffiffiffiffiffiffi
B=a

p
at the

beginning of Case 4.2. If we convert back to the original parameters, we obtain the

following conditions: A ¼ 0;B . 0;C . 0;a . 0;b , Ca=B and g ¼ 0. Observe that

this result is exception (a) in the conclusion of Theorem 4.

Case 4.2.2. Assume that g2 bC . 0.

In this case, f has one unique relative extreme point that is a relative maximum, as can

be seen from equation (18). It is easy to calculate that any fixed point �x of f must satisfy

�x3 þ b�x2 þ ðg2 1Þ�x2 C ¼ 0: ð20Þ
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Observe that equation (20) must have at least one non-negative root. If f does not have

a positive prime period-two pair then by Theorem 3.3, for every x0 . 0 the solution

ff nðx0Þ} must converge to one of its non-negative fixed points. Suppose f does have a

positive prime period-two pair. From equation (15), it is clear that it has at most one such

pair of solutions, say ð�p1; �p2Þ. From equation (15), we see that

minð�p1; �p2Þ ¼ C 2 bð1þ gÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½C 2 bð1þ gÞ�2 2 4g2ð1þ gÞ

p
2g

¼ C 2 bð1þ gÞ
2g

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4g2ð1þ gÞ
½C 2 bð1þ gÞ�2

s" #
: ð21Þ

From equation (19), we see that the critical value m must satisfy

m ¼ 2C þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 2 þ g2 bC

p
¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 bC

C 2

r
2 1

" #
: ð22Þ

Since 12
ffiffiffiffiffiffiffiffiffiffiffi
12 a

p
$ a=2 for all 0 # a # 1 and

ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
2 1 , a=2 for all a . 0, then

by equations (21) and (22) we obtain

min ð�p1; �p2Þ $ g ð1þ gÞ
C 2 bð1þ gÞ ð23Þ

and

m ,
g2 bC

2C
: ð24Þ

By Theorem 3.3, every solution of f will converge either to a fixed point of f or to the

unique positive prime period-two pair as long as m # minð�p1; �p2Þ. By equations (23) and

(24), it is sufficient to show that

g2 bC

2C
#

g ð1þ gÞ
C 2 bð1þ gÞ ;

or equivalently,

Cðgþ 2g2 þ bCÞ þ bð1þ gÞðg2 bCÞ $ 0:

However, this equation is true since g2 bC . 0.

Case 4.3. Assume that A ¼ 0; B ¼ 0; C . 0 and a . 0.

The function f has the form

f ðxÞ ¼ C

ax2 þ bxþ g
: ð25Þ

It is easy to check that f is strictly decreasing.

Case 4.3.1. Assume that g . 0.

In this case, we have limx!0 f ðxÞ ¼ C=g. By Theorem 3.1, every solution of

f converges to either a positive fixed point of f or a positive prime period-two pair of f .

Case 4.3.2. Assume that g ¼ 0.

It is easy to calculate that limx!0 f ðxÞ ¼ 1, limx!1 f ðxÞ ¼ 0 and limx!0 f
2ðxÞ=

x2 ¼ b2=ðaCÞ. It is also easy to check that there are no positive prime period-two pairs.
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Since f is strictly decreasing, there must be a unique positive fixed point, say �x, of f which

is a root of a�x3 þ b�x2 2 C ¼ 0. By Theorem 3.1, for every x0 [ ð0; �xÞ, f 2nðx0Þ converges
to 0 and f 2nþ1ðx0Þ diverges to infinity. Furthermore, for every x0 [ ð�x;1Þ, f 2nðx0Þ diverges
to infinity and f 2nþ1ðx0Þ converges to 0. Observe that this case is exception (b) in the

conclusion of Theorem 4.

Case 4.4. Assume that A . 0, a ¼ 0 and b . 0.

The difference equation takes the form

xnþ1 ¼ Ax2n þ Bxn þ C

bxn þ g
; f ðxnÞ: ð26Þ

In this case, there are no positive prime period-two pairs since a simple calculation

shows that any positive prime period-two pair ð�p1; �p2Þ must satisfy Að�p1 þ �p2Þ ¼ 2g2 B.

It is easy to check that any fixed point �x of f must satisfy

ðA2 bÞ�x2 þ ðB2 gÞ�xþ C ¼ 0: ð27Þ

It is easy to calculate that

f 0ðxÞ ¼ Abx2 þ 2Agxþ Bg2 Cb

ðbxþ gÞ2 : ð28Þ

Thus, f has at most one positive critical value.

Observe that if Bg2 Cb $ 0, then f is strictly increasing. If Bg2 Cb , 0, then f has

a unique positive relative minimum.

Case 4.4.1. Assume that A . b.
Case 4.4.1.1. Assume that either ðg2 BÞ2 , 4ðA2 bÞC or B2 g $ 0.

In this case, equation (27) has no positive roots and thus there are no positive fixed

points for f . Since f ðxÞ=x! A=b . 1 as x!1, then clearly f ðxÞ . x for all x . 0. This

implies that f nðx0Þ!1 as n!1 for every x0 . 0. Observe that this case is exception

(c) in the conclusion of Theorem 4.

Case 4.4.1.2. Assume that ðg2 BÞ2 $ 4ðA2 bÞC and B2 g , 0.

In this case, there are one or two non-negative fixed points. The larger (or only) fixed

point of f is

�xmax ¼ g2 Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 BÞ2 2 4ðA2 bÞC

p
2ðA2 bÞ :

Observe that f ðxÞ=x! A=b . 1 as x!1.

Case 4.4.1.2.1. Assume that Bg2 Cb $ 0.

As we observed earlier by examining equation (28), in this case f is strictly increasing.

By Theorem 2.9, the solution ff nðx0Þ} converges to a fixed point of f if x [ ð0; �xmax� and
diverges to infinity if x0 [ ð�xmax;1Þ.

Case 4.4.1.2.2. Assume that Bg2 Cb , 0.

As we observed earlier by examining equation (28), in this case f has a unique relative

minimum at say m. We will now investigate to see whether there exists a valuem , m such
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that f ðmÞ ¼ �xmax, or equivalently

Am2 þ ðB2 b�xmaxÞmþ C 2 g�xmax ¼ 0: ð29Þ

Since we know �xmax is a solution of this equation, then m2 �xmax is a linear factor. It is

easy to check that the other linear factor is Amþ ðA2 bÞ�xmax þ B. Thus, there is no non-

negative solution to equation (29) for m. By Theorem 3.3, the solution ff nðx0Þ} converges
either to a non-negative fixed point of f or to a positive prime period-two pair of f if

x0 [ ð0; �xmax�, and diverges to infinity if x0 [ ð�xmax;1Þ.
Observe that the results of Cases 4.4.1.2.1 and 4.4.1.2.2 give exception (d) in the

conclusion of Theorem 4.

Case 4.4.2. Assume that A ¼ b and either B . g, or both B ¼ g and C . 0.

In this case, equation (27) has no positive roots and so there are no positive fixed

points. Also, it is easy to see that f ðxÞ . x as x!1. This implies that f ðxÞ . x for all

x . 0. Obviously, for every x0 . 0 the solution ff nðx0Þ} diverges to infinity. Observe that
this case is exception (e) in the conclusion of Theorem 4.

Case 4.4.3. Assume that A ¼ b, B ¼ g and C ¼ 0.

This is the trivial case f ðxÞ ¼ x.

Case 4.4.4. Assume that either 0 , A , b or both A ¼ b and B , g.
It is easy to check that f ðxÞ , x as x!1. From equation (27), it is obvious that there

must be either one or two non-negative fixed points of f . By either Theorem 2.9 or

Theorem 3.3, for every x0 . 0 the solution ff nðx0Þ} converges to a fixed point of f . A
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