
2

Journal of Computer Science Research | Volume 01 | Issue 03 | October 2019

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jcsr.v1i3.1268

Journal of Computer Science Research

http://ojs.bilpublishing.com/index.php/jcsr

ARTICLE

Evaluating Word Similarity Measure of Embeddings Through Binary
Classification

A. Aziz Altowayan Lixin Tao*
Computer Science Department, Pace University, New York, United States

ARTICLE INFO ABSTRACT

Article history
Received: 29 September 2019
Accepted: 24 October 2019
Published Online: 20 November 2019

We consider the following problem: given neural language models (em-
beddings) each of which is trained on an unknown data set, how can
we determine which model would provide a better result when used for
feature representation in a downstream task such as text classification or
entity recognition? In this paper, we assess the word similarity measure
through analyzing its impact on word embeddings learned from various
datasets and how they perform in a simple classification task. Word rep-
resentations were learned and assessed under the same conditions. For
training word vectors, we used the implementation of Continuous Bag
of Words described in [1]. To assess the quality of the vectors, we applied
the analogy questions test for word similarity described in the same
paper. Further, to measure the retrieval rate of an embedding model, we
introduced a new metric (Average Retrieval Error) which measures the
percentage of missing words in the model. We observe that scoring a
high accuracy of syntactic and semantic similarities between word pairs
is not an indicator of better classification results. This observation can
be justified by the fact that a domain-specific corpus contributes to the
performance better than a general-purpose corpus. For reproducibility, we
release our experiments scripts and results.**

Keywords:
Word embeddings
Embeddings evaluation
Binary classification
Word2vec

　

*Corresponding Author:
Lixin Tao,
Computer Science Department, Pace University, New York, United States;
Email: ltao@pace.edu
** https://github.com/iamaziz/embed-eval

1. Introduction

Language modeling is the crux of the problem in
Natural Language Processing (NLP). Recently,
neural language models have outperformed the tra-

ditional language model approaches such as n-gram. The
superiority of the neural methods lies in their capability to
overcome the curse of the dimensionality problem while,
simultaneously, capturing different similarities between
words [2].

Neural language models learn distributed represen-
tations for each word in the form of real-numbers-val-

ue vectors, which allow similar words to have similar
vectors. Such sharing is an important characteristic that
enables the model to treat related words similarly and,
hence, gives the model the ability to generalize. These
word representations are usually known simply as Word
Embeddings.

Nowadays, word embedding is the standard approach
for feature representation in many NLP tasks. Traditional
feature representation methods, such as bag-of-words and
Term Frequency Inverse Document Frequency (TFIDF),
rely on hand-crafted feature extractor and are time-con-
suming and domain-specific. Hence, embedding based

3

Journal of Computer Science Research | Volume 01 | Issue 03 | October 2019

Distributed under creative commons license 4.0

techniques provide a better alternative for automating
many tasks in language modeling and NLP.

Among these techniques context-predicting semantic
vectors have distinctly proven their superiority to the
count-based ones [3]. While count-based vectors are more
about the frequency of the word, context-based vectors
make more emphasis on the word and its context.

Popular word vector learning methods are introduced
in [1,4,5] and have gained great attention since then. From
these methods, learning continuous word embeddings us-
ing skip-gram and negative sampling is the most common
approach for building word vectors [6]. This method was
introduced and described in [1].

However, since vector training occurs in an unsuper-
vised fashion, there is no accurate way to estimate the
quality of the vector representations objectively. Several
extrinsic and intrinsic evaluation methods have been dis-
cussed in [7]. However, at the time of this writing, there
is still no reliable method for comparing the quality of
different embedding models. So, this is still an open ques-
tion. Commonly, the quality can be assessed using the
word similarity task, which is a test with a set of similarity
analogy questions [1].

Nevertheless, with the current word similarity evalua-
tion method, word similarity accuracy and having more
vocabulary in the model do not result in better perfor-
mance in the downstream task.

From experiments, we show that scoring well on word
similarity measure questions does not imply better per-
formance in the downstream task. Our findings are in line
with the observations of [8]. Therefore, we observe that the
accuracy of word similarity measure is not, necessarily, an
indicator for the usefulness of the word embedding model.
In this paper, we explain and justify this claim based on
the observation of our experimentation results.

For instance, we show that the GoogleNews embedding
model has the following two advantages over the IMDB
model. First, it scores better results in word similarity
accuracy (74.26%) in comparison to IMDB’s (23.71%);
second, GoogleNews contains 3 million vocabulary words
while IMDB contains around 19,000. Despite these ad-
vantages of GoogleNews, the classifiers’ performance was
worse with GoogleNews than with IMDB.

The rest of the paper is structured into the following
parts: related work, our experiments, discussion, future
work, and finally, the conclusion.

2. Related Work

We approached related work in the following manner:
first, we investigated what it takes to build quality em-
bedding models and which components to consider.

DOI: https://doi.org/10.30564/jcsr.v1i3.1268

We then analyzed similar work for evaluating word
embeddings using extrinsic and intrinsic methods. We
also reviewed the available current work on building
domain-specific embeddings. And finally, we look into
work that focuses on the syntactic and semantic similari-
ties between words.

Training elements such as the model, the corpus, and
the parameters have been analyzed in detail in [9]. They
observed that the corpus domain is more important than
its size. This explains our results where the smaller do-
main-specific corpus (IMDB) achieved better results
than the much larger general-purpose corpus (Google-
News).

We reviewed papers on evaluating word vectors’ quali-
ty and model accuracies. Existing evaluation methods fall
into two types: intrinsic and extrinsic evaluation. In the
intrinsic evaluation, the goal is to directly assess the qual-
ity of word vectors in hopes that it will reflect on the per-
formance of the downstream tasks. So, synthetic metrics
are proposed to test the semantic and syntactic similarities
between words.

For example, a pre-selected set of query terms is used
to estimate words’ relationships. Each query denotes two
pairs of “analogically” similar words. For example, relat-
ing big to bigger in the same way as small to smaller is
called “syntactic similarity”, while relating Tokyo to Japan
in the same way as London to England is called “semantic
similarity”. Then, such queries can take the form of ques-
tions, for instance, “What is the word similar to small in
the same sense as bigger is similar to big?”. To query the
model, a question is formulated in an algebraic expression
as follows: answer = vector(“bigger”) - vector(“big”)
+ vector(“small”). This method was first proposed in [1];
and published with a set of around 20 thousand syntactic/
semantic questions. It is fast and computationally inex-
pensive, however, there are problems associated with this
technique [8]. Further, other evaluation techniques have
been proposed to reduce bias [10]. In such methods, they
directly compare embeddings with respect to specific que-
ries.

While in the extrinsic evaluation, we indirectly evalu-
ate word embeddings. In other words, we use the embed-
dings as input features to a downstream task and measure
the performance metrics specified to that task [10]. For
instance, when the task is text classification, we would use
the embeddings to represent words in the text. In some
approaches, they applied extrinsic evaluations to learn
task-specific embeddings [11].

Finally, a thorough investigation and survey cover-
ing the current evaluation methods have been discussed
in [7].

4

Journal of Computer Science Research | Volume 01 | Issue 03 | October 2019

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jcsr.v1i3.1268

3. Building Word Embeddings

3.1 Data Collection and Exploration

Figure 1. The approach design and workflow

In this section, we describe the data sources and texts
we used for training the embedding models. We start-
ed with two well-known corpora. The first one is text8,
a standard corpus used in NLP community which has
around 100MB of cleaned English text of a Wikipedia
dump from 2006, and the second one is the Large Movie
Review Dataset (or IMDB). IMDB contains 100 thousand
movie reviews prepared for sentiment classification prob-
lems. Later on, we will use this same dataset in our clas-
sification experiment; we are aware this may cause bias in
the datasets, further discussion to follow later.

As a way to augment our data, we created a new hybrid
corpus by concatenating the above two corpora; we call it
text8-imdb. This allows us to compare the results of two
models and their hybrid to see how they may affect one
another. Later on, in the classification section, we will
see that imdb achieved the best among the three. This is a
bit surprising, because its average retrieval error (1.46)
was higher than that of text8-imdb (0.99); though it still
achieved better results.

For additional insights about the data, we explored
each corpus for statistical information “meta-data” such as
number of the unique words, the total count of characters,
and the total count of words. See Table 1 for more details
on these metrics.

Table 1. Statistics of the training text (corpus)

Corpus char count word count unique words

imdb 125,882,839 23,573,192 144,841

text8 100,000,000 17,005,207 253,854

We also wanted to get a better sense of the characters’
usage and their frequency in each corpus. Figure 2 illus-
trates some visualization of the usages. It shows the fre-
quency of the 26 English letters usage in each of the three
corpora.

Figure 2. Letters frequencies as they appear in text8 and
IMDB

3.2 Model Training and Parameters

Following [1] approach for learning vector representa-
tions of words, we trained three models using three var-
ious corpora. In the first one, we merged the entire set
of 100,000 movie reviews [12] into one big text file, we
will refer to the vectors “model” generated from this text
as imdb. And for the second model, as mentioned in the
previous section, we used a 100 MB of cleaned Wikipe-
dia English text known as text8, we will call the model
from this corpus: text8. The third “hybrid” model is the
combination of the two above files (as one big text file).
We refer to this model as imdb-text8. The fourth model,
in our experiment, is GoogleNews. A pre-trained model
published in [1].

With the exception of GoogleNews, all the models
were trained using CBOW architecture with the same hy-
per-parameters. We used the original (C language) imple-
mentation of word2vec toolkit. After compiling and build-
ing the software locally, we use the following command to
train the models:

$./word2vec -train $CORPUS \
 -output $OUT \
 -cbow 1 \
 -size 300 \
 -window 10 \
 -negative 25 \
 -hs 0 \
 -sample 1e-4 \
 -threads 20 \

5

Journal of Computer Science Research | Volume 01 | Issue 03 | October 2019

Distributed under creative commons license 4.0

 -binary 1 \
 -iter 15

3.3 Exploring Models

After we built the models, we decided to evaluate their
response to the analogy question test sets. Table 2 below
displays the number of the learned “vectorized” vocab-
ulary in each model. The table also shows the number
of questions seen in the model, along with their average
similarity accuracy. These results were obtained based
on $./word2vec/compute-accuracy script in the
same toolkit. For faster approximate evaluation, we used
the recommended threshold of 30,000 to reduce vocabu-
lary.

Table 2. Embedding vectors compared

Embeddings # vocab. dim. # quest. seen avg. sim. acc.

imdb 53,195 300 10,505 33.41%

text8 71,291 300 12,268 53.60%

imdb-text8 94,158 300 12,448 59.89%

GoogleNews 3M 300 13,190 76.85%

3.4 Determining Models Accuracy

To conduct a fair comparison between models, we intro-
duce the Average Retrieval Error “AVG_ERR” as a way
to estimate the vectors’ availability in the given model. It
is the total number of missed words (i.e. words that que-
ried but not available in the embedding model) over the
total words queried. See formula 1 below:

∑ i

n

=1
Q t r

n
(i i−)

Where, Q is a query to the model which returns the
vectors for a set of given tokens (words), is the total num-
ber of the queries made, t is the number of tokens in query
i , and r is the number of retrieved (found) vectors for
query i.

For simplicity, we can rewrite as:

Avg trieval Error.Re = ∑ i

n

n
=1

mi

And m is the number of missed (not found) vectors for
query i.

In Figure 3, we show the number and percentage of
analogy questions seen in the model (with a threshold of
30K) for word similarity task.

Figure 3. Embeddings results on the word analogy task
(out of the total 19544 questions), figure a. is the number

of questions seen and figure b. is the percentage of the
questions seen

We also recorded the accuracy for each topic of the 14
question type categories. Instead of using a huge table
with many numbers, we decided to illustrate the result in
figure 4 to quickly grasp the topics’ results.

Figure 4. Results on the topics accuracy from word analo-
gy task

Finally, in figure 5, we show the overall accuracy re-
sults for every model; such as the average score for all
topics and density of topics’ results.

Figure 5. Accumulative results (14 topics) on the word
analogy task for each embeddings. a) boxplot for the

range of topics’ result b) the density of topics' scores, and c)
the average score of all topics

DOI: https://doi.org/10.30564/jcsr.v1i3.1268

6

Journal of Computer Science Research | Volume 01 | Issue 03 | October 2019

Distributed under creative commons license 4.0

Despite the scored word similarity accuracy of the
IMDB model, its classification result is quite impressive.
We will see that in the next section; where the learned
word representations reflect a great deal of the actual se-
mantics.

4. Applying Embedding Models for Binary
Classification

In this section we evaluate the performance of each em-
bedding model in a downstream task. Our task is a simple
binary classification for sentiment analysis problem.

4.1 Supervised Training Dataset

To train the sentiment classifiers, we used the popular
benchmark IMDB-50K movie reviews dataset. It was in-
troduced by [12], and available to download. The dataset,
which was prepared specially for binary sentiment clas-
sification, contains 25K highly polar movie reviews for
training and 25K for testing. The sentiment of reviews is
balanced in both data sets, i.e. one half is positive, and the
other half is negative.

Additionally, IMDB has another unlabeled dataset
contains 50K reviews which we used in training our
word2vec models. This dataset, however, was not used for
training the binary classifiers.

4.2 Representing Reviews

After preprocessing the review text, the vector represen-
tation of each token “word” is then retrieved by querying
the embedding model. If a token is not found in the em-
beddings’ vocabulary, its representation will be ignored.
That’s where the concept of Average Retrieval Error
comes from. The more tokens missed, the higher the
average error will be. When all the review’s tokens are
processed, the review then will be represented as a fixed
size feature vector by averaging the representations of all
tokens.

4.3 Training Classifiers Results

We trained five simple binary classification algorithms
Perceptron, Support Vector Machines, Stochastic Gradient
Descent, Logistic Regression, and Random Forest. We
used the built-in implementations of these algorithms pro-
vided by the scientific toolkit library “scikit-learn”. As for
parameters tuning, we applied the default parameters in
scikit-learn.

To know the complete set of parameters for each clas-
sifier, one can refer to the log file we included with our
project code.

In table 3, we show the performance of each classifier
with each of the respective four embedding models.

Table 3. Vocabulary Size, Average Retrieval Errors, and
Classifiers Performance with each model

Model Vocab. AVG_
ERR Percept. SVM SGD LogReg RForest

imdb 53,195 1.46 84.29% 89.20% 86.49% 89.19% 84.39%

text8 71,291 4.62 76.62% 81.17% 75.44% 81.22% 73.88%

imdb-
text8 94,158 0.99 80.11% 89.12% 85.50% 89.08% 83.96%

Google-
News 3,000,000 28.04 78.94% 86.14% 82.89% 86.08% 80.16%

See figure 6 for a better visual comparison of the
scores. We can see that the classifiers scored better with
IMDB embedding model, despite that GoogleNews model
has better accuracy in term of analogy query test. We can
also notice that IMDB is still better than its hybrid model
text8-imdb which intuitively should enrich the model’s
representation capacity by adding more vocabulary (which
can be verified by inspected the average retrieval error
decrease from imdb to text8-imdb). Reducing AVG_ERR
did not improve the classifiers; but on the contrary, com-
bining text8 degrades imdb’s performance.

Figure 6. Sentiment classifiers score with each embed-
dings. a) embedding models wise results, and b) classifiers

wise results.

DOI: https://doi.org/10.30564/jcsr.v1i3.1268

7

Journal of Computer Science Research | Volume 01 | Issue 03 | October 2019

Distributed under creative commons license 4.0

Avoiding bias in IMDB
The training and testing datasets are initially the same

corpus that we use to generate imdb embeddings. Thus,
and to make sure that our testing is not biased, we used
another sentiment dataset (i.e. other than IMDB reviews)
to test the performance of the classifier. The dataset con-
tains 7086 labeled (positive/negative) training sentences
and 33052 unlabeled sentences provided for prediction
problems. We used the training data for testing our clas-
sifiers, as we were not able to acquire the actual labels of
prediction set. As expected, the highest scores of the clas-
sifiers still achieved with imdb embeddings.

5. Discussion: Results summary

To summarize and aggregate all the results and scores
together in one place. We took the average score of all
classifiers achieved with each embedding model. These
aggregates are displayed in table 4.

Table 4. Summary on the final results for embedding
models’ accuracy and classification performance

Embeddings vocab. size AVG. retrieval
err.

AVG. similari-
ty acc.

AVG. senti-
ment score

imdb 53,195 1.46 33.41% 86.73%

text8 71,291 4.62 53.60% 77.74%

imdb-text8 94,158 0.99 59.89% 85.55%

GoogleNews 3M 28.04 76.85% 82.79%

5.1 Model Accuracy and Classifiers Performance

Why IMDB word embedding model is better than Google-
News embedding? Learning task-specific vectors through
fine-tuning offers further gain in performance. See static
vs. non-static representation (section 4.2 of CNN sentence
classification [13]).

So, for example, you’d expect words like “amazing”
and “awful” to be very far apart whereas in word2vec
they’d probably be closer because they can appear in sim-
ilar contexts.

In the accuracy evaluation, IMDB model scored
22.94% on the 8182 test cases found (out of the 19544 test
cases); while the GoogleNews model scored 74.26% on
the 7614 test cases found. Although IMDB model scored
less, the sentiment classifiers performed better with it in
comparison to the other model.

5.2 Improving Classifiers’ Performance

Although we were not concerned with improving the
overall performance of the classifiers, there are several
things to consider that can improve the classifiers’ results.

For example, one can apply the ensemble approach,
described in [14], that combine multiple baseline models
rather than relying on a single model. Further improve-
ment might be introduced by describing the review feature
differently, instead of averaging the vectors [15].

Also, while training the vectors, careful choice and
tuning of the hyper-parameters could bring much gain to
the model accuracy [16]. Finally, one may consider words
dependency instead of relying solely on linear contexts [17].

5.3 Missing Data

When a given token (of a sentence) is not available in the
embedding model, its vector value is ignored. However,
it is counted toward the sentence length when we take the
overall average. Can we do something else about this?
e.g. 1) substitute (compute) its value as the average of
other tokens in the same review, or 2) do not count it in
review length, or 3) apply other known techniques for
handling NaN values.

5.5 Average Retrieval Error

After comparing the models' sensitivity to the average
retrieval error, we noticed that word retrieval in a model
does not affect the overall performance. Possibly, one way
to enrich this metric is by introducing word-wise weights.
For example, common words can have low weight while
the less common ones can have higher weight.

5.6 Extending This Work

We can think of three possible ways to further extend
this work. Firstly, expand the models range for broader
comparison. For instance, one can integrate more (other)
pre-trained models such as GloVe, ELMo, BERT to use
in both experiments; embedding quality assessment, and
binary classifiers. Secondly, and to enrich the procedure
of classification comparison, one can try another approach
to aggregating the sentence features (other than averaging
vectors for sentence representations). Finally, in this work,
we introduced the Average Retrieval Error “AVG_ERR”.
We think this measure can be further improved by add-
ing weights to words in the sentences. For example, stop
words, and common vocabulary can have less weight than
those that are more specific.

6. Conclusion

We discussed the problem of choosing between multiple
word embedding models. To this end, we made the fol-
lowing contributions. We built and trained three different
embeddings models based on published data sets. We,
then, implemented two types of evaluation methods on the

DOI: https://doi.org/10.30564/jcsr.v1i3.1268

8

Journal of Computer Science Research | Volume 01 | Issue 03 | October 2019

Distributed under creative commons license 4.0

models. For the intrinsic evaluation, we applied the word
similarity measure method; while we did the extrinsic
evaluations through a binary classification problem. We
presented the results of performance comparisons over
four different embedding models. We also introduced
a metric for measuring the model’s retrieval rate to the
number of queries made. For reproducibility, we released
the models, data, and scripts used in our experiments.

We have shown that scoring high accuracy in the Word
Similarity Measure test does not imply better performance
in the downstream task. In other words, if a model A
achieves a higher score than model B in the analogy ques-
tion test, this does not mean A will perform better than B
in a downstream task. This finding is in line with observa-
tions from related work. We also observed that the mod-
el’s coverage of vocabulary (i.e. vocabulary size) is not as
essential as containing a domain-specific dictionary.

References

[1] Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. Efficient estimation of word representa-
tions in vector space. arXiv.org, 2013.

[2] Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.deep-
learningbook.org

[3] Marco Baroni, Georgiana Dinu, and Germ’an Kru-
szewski. Don’t count, predict! a systematic compari-
son of context-counting vs. contextpredicting seman-
tic vectors. In ACL, 2014, (1): 238–247.

[4] Jeffrey Pennington, Richard Socher, and Christopher
D Manning. Glove: Global vectors for word repre-
sentation. EMNLP, 2014: 1532–1543.

[5] Christopher D Manning. Computational linguistics
and deep learning. COLING, 2015, 41(4): 701–707.

[6] Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. Two/too simple adaptations of word2vec
for syntax problems. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, 2015: 1299–1304.

[7] Amir Bakarov. A survey of word embeddings eval-
uation methods. arXiv preprint arXiv:1801.09536,
2018.

[8] Manaal Faruqui, Yulia Tsvetkov, Pushpendre Ras-

togi, and Chris Dyer. Problems with evaluation of
word embeddings using word similarity tasks. arXiv
preprint arXiv:1605.02276, 2016.

[9] Siwei Lai, Kang Liu, Shizhu He, and Jun Zhao. How
to generate a good word embedding. IEEE Intelligent
Systems, 2016, 31(6): 5–14.

[10] Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. Evaluation methods for unsuper-
vised word embeddings. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, 2015: 298–307.

[11] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. Learning sentimentspecific word
embedding for twitter sentiment classification. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics, 2014, 1:
Long Papers: 1555–1565.

[12] Andrew L Maas, Raymond E Daly, Peter T Pham,
Dan Huang, Andrew Y Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies. Association for Computational Linguis-
tics, 2011, 1: 142-150.

[13] Yoon Kim. Convolutional neural networks for sen-
tence classification. arXiv preprint arXiv:1408.5882,
2014.

[14] Gr’egoire Mesnil, Tomas Mikolov, Marc’Aurelio
Ranzato, and Yoshua Bengio. Ensemble of gener-
ative and discriminative techniques for sentiment
analysis of movie reviews. AAAI Spring Symposium
AI Technologies for Homeland Security 200591-98,
cs.CL, 2014.

[15] R’emi Lebret and Ronan Collobert. The sum of
its parts: Joint learning of word and phrase repre-
sentations with autoencoders. arXiv preprint arX-
iv:1506.05703, 2015.

[16] Omer Levy, Yoav Goldberg, and Ido Dagan. Improv-
ing distributional similarity with lessons learned from
word embeddings. Transactions of the Association
for Computational Linguistics, 2015, 3(0): 211–225.

[17] Edward Grefenstette, Phil Blunsom, Nando de Freit-
as, and Karl Moritz Hermann. A deep architecture for
semantic parsing. arXiv preprint arXiv:1404.7296,
2014.

DOI: https://doi.org/10.30564/jcsr.v1i3.1268

	related-work
	building-word-embeddings
	data-collection-and-exploration
	model-training-and-parameters
	exploring-models
	determining-models-accuracy
	applying-embedding-models-for-binary-cla
	supervised-training-dataset
	representing-reviews
	training-classifiers-results
	discussion
	conclusion
	_GoBack
	OLE_LINK1
	__DdeLink__1_1024875416
	_GoBack

