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Introduction
I propose Bayesian Markov Chain Monte Carlo (MCMC) estimation of the systemic risk rankings

based on the MES (marginal expected shortfall) and SRISK (the expected capital shortage of a firm

conditional on a substantial market decline). I also introduce a generalized threshold conditional

volatility model (GTARCH) and compare it to traditional asymmetric models of volatility. The

new model allows both ARCH and GARCH parameters to change when previous period return is

negative, eliminates the problem of a negative bias of alpha in the traditional GJR-GARCH model

and shows higher volatility persistence for negative returns compared to GJR-GARCH. I apply

the GTARCH model for forecasting volatility of financial institutions equity returns. The equity

volatility combined with correlation with the market are used for the measurement of systemic

risks, MES and SRISK, in a fashion similar to Brownlees and Engle (2012) and Acharya et. al

(2010) but incorporating better asymmetric volatility properties and uncertainty for risk measures.
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Measurement of Systemic Risk

Let rt and rm,t be the daily log returns of a firm and the market
correspondingly. Following Brownlees and Engle (2012) we
consider the following model for the returns:

rmt = σmtεmt (1)

rt = σtρtεmt + σt
√

1− ρ2t εt

where εmt, εt ∼ F are independent and identically distributed
variables with zero means and unit variances, σt and σmt are
conditional standard deviations of the firm return and the market
return correspondingly, and ρt is conditional correlation between
the firm and the market. This model is also called the dynamic

conditional beta model with βt = ρt
σt
σmt

and tail dependence on

correlation of firm returns and the market

rt = βtrmt + σt
√

1− ρ2t εt (2)

The conditional variances and correlation are modelled using the

GJR-GARCH DCC model in Brownlees and Engle (2012).
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Measurement of Systemic Risk

The first considered systemic risk measure is the daily marginal
expected shortfall (MES) which is the conditional expectation of
a daily return of a financial institution given that the market
return falls below threshold level C. In practice, C = −2%.

MESt−1 = Et−1(rt|rmt < C) (3)

= σtρtEt−1(εmt|εmt ≤ C/σmt) + σt

√

1− ρ2tEt−1(εt|εmt ≤ C/σmt)

The computation of the expected shortfall following Scaillet (2005) using nonparametric
estimates given by:

Et−1(emt|emt ≤ α) =
∑t−1
i=1 emiΦh(

α−emi
h

)
∑t−1
i=1 Φh(

α−emi
h

)
(4)

where α = C/σmt, Φh(t) =
∫ t/h
−∞ φ(u)du, φ(u) is a standard normal probability distribution

function used as kernel, and h = T−1/5 is the bandwidth parameter.
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Measurement of Systemic Risk

The second measure is the long run marginal expected
shortfall based on the expectation of the cumulative
six month firm return conditioned on the event that the
market falls by more than 40% in six months.
It is shown by Acharya, Engle and Richardson (2012) that the LRMES can be approximated by

LRMESt ≈ 1− e−18∗MESt (5)

Finally, the capital shortfall of the firm based on the
potential capital loss in six months is defined as

SRISKt = max{0; kDt − (1− k)(1− LRMESt)Et} (6)

where Dt is the book value of Debt at time t, Et is the market value of equity at time t and

k ≈ 8% is the prudential capital ratio of the US banks. It is assumed that the capital loss happens

only due to the loss in the market capitalization LRMES ∗ Et
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Generalized Threshold GARCH model

Threshold ARCH or GJR-GARCH(1,1,1)

yt = µ+ εt (7)

σ2t = ω + αε2t−1 + γε2t−1I(yt−1 − µ < 0) + βσ2t−1

where I is a (0,1) indicator function. The problem with the threshold ARCH model above is that
coefficient α may take negative values in practice for equity returns. In the new model by
allowing both ARCH and GARCH parameters to change when yt−1 − µ < 0 the problem of
negative bias is resolved.

Generalized Threshold GARCH or GTARCH(1,1,1,1)

yt = µ+ εt (8)

σ2t = ω + αε2t−1 + γε2t−1I(yt−1 − µ < 0) + βσ2t−1 + δσ2t−1I(yt−1 − µ < 0)
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The Stationarity of GTARCH Model

The new GTARCH model shows higher persistence for negative returns (compared to positive
returns) in terms of both γ (yesterday’s shock) and δ (previous volatility forecast).

The weak stationarity condition in the GARCH model for the existence of the long run
unconditional variance σ2 is given by condition:

α+ β < 1, σ2 =
ω

1− α− β

Similarly for the GTARCH model we can define θ = E(I(yt < µ)).
The weak stationarity condition and the unconditional variance are given by

α+ β + γθ + δθ < 1, σ2 =
ω

1− α− β − γθ − δθ
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MCMC Estimation
Let the prior probability for the GTARCH volatility model be
given by

π(µ, α, γ, β, δ) ∝ N(µ0,Σµ) N(α0,Σα) N(γ0,Σγ) (9)

× N(β0,Σβ) N(δ0,Σδ)

where µ, α, γ, β and δ are the GTARCH parameters and have
proper normal priors with large variances.
Consider the Dynamic Conditional Correlations (DCC) model
with GTARCH volatility. The posterior pdf of DCC model is

p(η1, η2, ψ|data) ∝ π(η1, η2, ψ)× L(data|η1, η2, ψ) (10)

ηi = µi, αi, γi, βi, δi

ψ = ωij, α, β . – p.8/18



Let n=2 (2 firms, and a market).
The DCC log likelihood is given by

logL = log(Lv(η1, η2) + log(Lc(η1, η2, ψ) (11)

log(Lv) = −0.5
∑

(nlog(2π) + log(σ2i,t) +
r2i,t

σ2i,t
) (12)

log(Lc) = −0.5
∑

(

log(1− ρ212,t) +
z21,t + z22,t − 2ρ12,tz21,tz

2
2,t

1− ρ212,t

)

(13)

ρ12,t =
q12,t

√
q11,tq22,t

(14)

qij,t = ωij(1− α− β) + αzi,tzj,t + βqij,t−1 (15)

(16)

where ri,t and rm,t are daily log returns of firm i and the market correspondingly. The

standardized returns: zi,t =
ri,t√
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MCMC steps and Data used in the study

Step 1: I estimate parameters in blocks for each asset GTARCH
model using random walk draws.

Step 2: using fitted volatilities from step 1 find standardized
returns zit and estimate dynamic correlation between two assets.
We estimate parameters in blocks using random walk draw: (i)
ARCH parameters: α and ω12 as part of ARCH, (ii) GARCH
parameters β, (iii) Constant terms ωii = 1− α− β for i=1,2.

The data are from CRSP for returns and market capitalization for
the period 2001/01/02-2012/12/31. The book value of debt is
from COMPUSTAT.
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Data Analysis of MES and SRISK for 10 systemically

important US institutions

The following 10 systemically important financial firms were ranked the highest on VLAB
website as of June 7, 2013 (see Table 4).

US Top 10 SRISK SRISK% LRMES LVG

Bank Of America 16.5 51.46 14.16

JP Morgan Chase 16.1 54.12 11.58

Citigroup 13.4 57.24 11.66

MetLife 8.7 66.29 17.04

Prudential Financial 8.1 63.04 22.26

Morgan Stanley 8.0 67.76 15.40

Goldman Sachs 6.4 49.50 12.42

Hartford Financial Services 3.1 57.51 20.77

Capital One Financial 3.0 86.21 8.27

Lincoln National Corp 2.6 69.13 22.88
Source: http://vlab.stern.nyu.edu on June 7, 2013
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Returns and Estimated TGARCH volatility: BAC, JPM,

SPX
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Dynamic correlation with the market: BAC, JPM

Figure 1: Dynamic correlation with the market: BAC, JPM
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Distribution of 1% quantile (VaR) for the $1 million portfolio if (a) the residuals are

normal and (b) corrected for fat tails: BAC, JPM

Figure 2: Distribution of 1% quantile (VaR) for the $1 million
portfolio if (a) the residuals are normal and (b) corrected for fat
tails: BAC, JPM
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Marginal Expected Shortfall (MES) and Long Run

MES: BAC, JPM
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Leverage and SRISK: BAC and JPM
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Posterior PDFs of Marginal Expected Shortfall and

SRISK: BAC, JPM
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Conclusion
Using a new asymmetric GTARCH model and capturing uncertainty around the measures I found
that MES, LRMES and SRISK are statistically different for major financial firms in the periods pf
low volatility, but not in periods of high volatility.

1. Introduced Bayesian analysis of the systemic risk measures,
derived the full posterior distributions and showed how to
distinguish risks of different institutions.

2. Introduced and estimated a new asymmetric GTARCH
model that corrects the caveat and generalizes popular
asymmetric volatility GJR-GARCH model.

3. Future work: consider different distributional assumptions
for the error term and compare the market based measures
of systemic risks used in this paper to the results of
macroprudential stress tests.
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