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Abstract

In this paper I introduce a generalized threshold conditional volatility model
(GTARCH) which captures asymmetry in both ARCH and GARCH terms.
The GTARCH is then combined with DCC (dynamic conditional correlations
model) in order to measure MES (marginal expected shortfall) and SRISK (the
expected capital shortage of a firm). Markov Chain Monte Carlo (MCMC)
algorithms are used for estimation of both models and the distributions of
systemic risks are derived fromMCMC draws. The GTARCHmodel is shown to
overperform the standard GJR-GARCH asymmetric volatility model for equity
returns and log-differences of Credit Default Swaps (CDS) for banks’ secured
bonds. The CDS spreads and their volatility are used as additional measures of
systemic risks of financial institutions. Overall, I found that the distributions
of systemic risks are statistically different for major financial institutions in
the recent period of low volatility but are very close during the financial crisis.
Thus, at the time when volatility is high it is hard to rank banks based on MES
and SRISK that are reported by the Volatility Institute (VLAB).

1 Introduction

Following recent studies of systemic risks by Acharya et. al (2010) and Brownlees
and Engle (2012) among others I introduce Bayesian estimation of MES (marginal
expected shortfall) and SRISK (the expected capital shortage of a firm conditional on
a substantial market decline). The rankings for MES and SRISK are used to analyze
the systemic risks of financial institutions and are daily reported by the Volatility
Institute1. However, this measures are reported without uncertainty around the esti-
mates and thus one cannot distinguish if the difference in rankings of large financial
institutions is statistically significant. Recent surveys of systemic risk analytics by

1See http://vlab.stern.nyu.edu



Bisias et al. (2012) and Brunnermeier and Oehmke (2012) among others also do not
show how to measure and incorporate uncertainty for systemic risk measures. To fill
this gap the present paper will show how to estimate MES and SRISK using Bayesian
Markov Chain Monte Carlo (MCMC) algorithms.

In this paper I also introduce a generalized threshold conditional volatility model
(GTARCH) and compare it to traditional asymmetric models of volatility. Since in-
troduction of the generalized autoregressive conditional heteroscedasticity (GARCH)
model there have been many extensions of GARCH models that resulted in better
statistical fit and forecasts. For example, GJR-GARCH (Glosten, Jagannathan, &
Runkle (1993)) is one of the well-known extensions of GARCH models with an asym-
metric term which captures the effect of negative shocks in equity prices on volatility
commonly referred to as a "leverage" effect. The widely used GJR-GARCH model has
a problem that one of the estimated coefficients of the volatility model (alpha) takes
a meaningless negative value for equity indices. The typical solution to this problem
is setting the coefficient of alpha to zero in the constrained Maximum Likelihood
optimization.

In the GTARCH model both coefficients, ARCH (α) and GARCH (β), are allowed
to change to reflect the asymmetry of volatility due to negative shocks. As a subset of
this model GJR-GARCH model allows for asymmetry only in ARCH. Alternatively,
the GTARCH model allows for asymmetry only in GARCH or no asymmetry. The-
oretically and using Monte Carlo experiments it can be shown that additional asym-
metric GARCH term shifts the value of α upward compared to the GJR-GARCH
model. The asymmetric GARCH term compared to the asymmetric ARCH term
makes α positive. The suggested more flexible GTARCH model also shows more per-
sistent dynamics for GARCH parameters for the negative news and lower persistence
for the positive news. Our results for equity returns show that compared to GJR-
GARCH and GARCH our model predicts higher level of volatility in high volatility
periods and lower levels of volatility in low volatility periods.

The GTARCH is then combined with DCC (dynamic conditional correlations
model) in order to measure MES and SRISK. Brownlees and Engle (2012) use the
Maximum Likelihood estimation of GJR-GARCH volatility models for market and
firm returns as well as DCC model for the tail dependence. MES can be derived as
a function of volatility, correlation and tail expectations of a firm and market return
innovations. When measuring tail expectation Brownlees and Engle (2012) use non-
parametric kernel estimation without incorporating uncertainty. In this paper Markov
Chain Monte Carlo (MCMC) algorithms are used for estimation of both models and
the distributions of systemic risks are derived from MCMC draws. The advantage of
Markov Chain Monte Carlo algorithms is the natural ability to generate the posterior
predictive densities for variables of interest, such as volatility, correlation, value at
risk, expected shortfall, etc. The algorithms for estimating the GTARCH model and
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its combination with the the Dynamic Conditional Correlations DCC-GTARCH are
based on the extension of previously published algorithms of Goldman and Tsurumi
(2005). I use Metropolis-Hastings steps with random walk draws.

The Credit Default Swaps (CDS) data are widely used to access the default risks
of financial institutions and sovereign bonds. The literature analysing the risks im-
plied by CDS is growing. For example, Hull et. al (2004) among others studied the
relation between CDS spreads, bond yield spreads and credit rating announcements.
Carr and Wu (2011) show the relation between CDS spreads and out-of-the-money
American put options. In this paper I estimate the GTARCH model for the log-
differences of CDS spreads and find that the asymmetry resulting from higher spread
is better explained by the GTARCH than the GJR-GARCH model. The CDS pre-
miums change dramatically over time and may exhibit nonstationary behaviour. It
can be argued that the systemic risks of financial institutions can be related to the
level and volatility of CDS premiums. Some work in this direction was recently done
by Oh and Patton (2013) and the Volatility Institute where the CDS GARCH results
are now available.

The remainder of the paper is organized as follows. Section 2 presents the mea-
surements of the systemic risks and section 3 presents the GTARCH model. Section
4 presents summary statistics of the data and MLE results of GTARCH model for
S&P500 returns and log-differences in CDS premiums for Bank of America (BAC)
and JP Morgan Chase (JPM). Section 5 presents the MCMC algorithms. Section 6
estimates models using MCMC for the MES and SRISK of BAC and JPM overtime
and distribution of these measures in periods of high and low volatility for different
volatility models. Section 7 concludes.

2 Measurement of Systemic Risk

Let rt and rm,t be the daily log returns of a firm and the market correspondingly.
Following Brownlees and Engle (2012) we consider the following model for the returns:

rmt = σmtεmt (1)

rt = σtρtεmt + σt
√
1− ρ2t εt

where εmt, εt ∼ F are independent and identically distributed variables with zero
means and unit variances, σt and σmt are conditional standard deviations of the
firm return and the market return correspondingly, and ρt is conditional correlation
between the firm and the market. This model is also called the dynamic conditional
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beta model with βt = ρt
σt
σmt

and tail dependence on correlation of firm returns and

the market

rt = βtrmt + σt
√
1− ρ2t εt (2)

The conditional variances and correlation are modelled using the GJR-GARCH
DCC model in Brownlees and Engle (2012). In the next section I introduce the
generalized threshold GARCH volatility model and show that it outperforms GJR-
GARCH for equities.

In this paper I only consider the market based measures of systemic risks. Other
macroprudential and microprudential tests are beyond the scope of this paper but are
described in Bisias, Flood, Lo and Valavanis (2012) and Acharya, Engle and Pierret
(2013) among others.

The first considered systemic risk measure is the daily marginal expected shortfall
(MES) which is the conditional expectation of a daily return of a financial institution
given that the market return falls below threshold level C. In practice, in VLAB it
is assumed that market falls by more than 2%, i.e. the threshold C = −2%.

MESt−1 = Et−1(rt|rmt < C) (3)

= σtρtEt−1(εmt|εmt ≤ C/σmt) + σt
√
1− ρ2tEt−1(εt|εmt ≤ C/σmt)

The computation of the expected shortfall following Scaillet (2005) using nonpara-
metric estimates given by:

Et−1(emt|emt ≤ α) =

∑t−1
i=1 emiΦh(

α−emi

h
)∑t−1

i=1 Φh(
α−emi

h
)

(4)

where α = C/σmt, Φh(t) =
∫ t/h

−∞ φ(u)du, φ(u) is a standard normal probability distri-

bution function used as kernel, and h = T−1/5 is the bandwidth parameter.

The second measure is the long run marginal expected shortfall based on the
expectation of the cumulative six month firm return conditioned on the event that
the market falls by more than 40% in six months. It is shown by Acharya, Engle and
Richardson (2012) that the LRMES can be approximated by

LRMESt ≈ 1− e−18∗MESt (5)

Finally, the capital shortfall of the firm based on the potential capital loss in six
months is defined as

SRISKt = max{0; kDt − (1− k)(1− LRMESt)Et} (6)
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where Dt is the book value of Debt at time t, Et is the market value of equity at
time t and k ≈ 8% is the prudential capital ratio of the US banks. It is assumed that
the capital loss happens only due to the loss in the market capitalization LRMES∗Et

3 Generalized Threshold GARCH model

GJR-GARCH (Glosten, Jagannathan, & Runkle (1993)) is one of the well-known
asymmetric volatility models which captures the effect of negative shocks in equity
prices on volatility commonly referred to as a "leverage" effect. The model captures
risk-aversion of investors with volatility increasing more as a result of a negative news
compared to the positive news.2

Consider the GJR-GARCH volatility model for returns rt with mean μ given in
equation (7) below.

GJR-GARCH(1,1,1)

rt = μ+ εt (7)

σ2
t = ω + αε2t−1 + γε2t−1I(rt−1 − μ < 0) + βσ2

t−1

where I is a (0,1) indicator function, σt is conditional volatility.

The Generalized Threshold GARCH (GTARCH) model that I introduce in equa-
tion (8) is an extension of the model above allowing GARCH term to change for a
negative news (εt−1 < 0).

GTARCH(1,1,1,1)

rt = μ+ εt (8)

σ2
t = ω + αε2t−1 + γε2t−1I(rt−1 − μ < 0) + βσ2

t−1 + δσ2
t−1I(rt−1 − μ < 0)

The Stationarity of GTARCH Model

The weak stationarity condition in the GARCH model for the existence of the
long run unconditional variance σ2 is given by condition:

α+ β < 1, σ2 =
ω

1− α− β

2EGARCH is an alternative model but it is in logs of variance rather than typical GARCH
variance.
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Similarly for the GTARCH model we can define θ = E(I(rt < μ)) which is
percentage of observations with rt < μ. Then the weak stationarity condition and
the unconditional variance are given by

α+ β + γθ + δθ < 1, σ2 =
ω

1− α− β − γθ − δθ

4 Data description and MLE results

In this section I consider the equity returns daily data for BAC, JPM and S&P 500
index for the period 1/04/2001-12/31/2012 from CRSP database. I also consider the
CDS spreads on the 5 year secured bonds of BAC and JPM for the period 9/06/2001-
10/08/2013 from Bloomberg. All these data will be used for the analysis of systemic
risks in Section 6.

The summary statistics of the data are given in Table 1. All the series have fat
tails with the kurtosis over 10 and some skewness. Even though the CDS spreads
typically have significant positive skewness the log-differences of CDS spreads for
BAC and JPM do not show considerable skewness.

There may be some autocorrelation present in the model although AR(1) coeffi-
cients are not large.

Table 1: Summary statistics for daily equity returns and log-differences of daily CDS
spreads

BAC JPM S&P 500 CDS BAC CDS JPM

mean 0.045 0.047 0.011 0.0447 0.0287
std 3.406 2.841 1.342 5.0053 4.2022
Skew 0.904 0.829 0.017 -0.2013 -0.1753
Kurt 26.08 15.931 11.143 14.3665 16.5461
AR(1) -0.011 -0.089 -0.091 -0.021 0.052

Notes: Equity returns and log differences in CDS spreads for BAC (Bank Of America)

and JPM (JP Morgan Chase). All measured in basis points. Equity prices data are for the

period 1/04/2001-12/31/2012 from CRSP database. CDS data are for the period

9/06/2001-10/08/2013 from Bloomberg.

We consider the GTARCH model for the returns and log-differences of CDS
spreads. Unlike for the equity returns the bad news in CDS market is when the
spreads increase. Thus, we change the sign of the error in the dummy indicator
function to I(rt−1 − μ > 0) for the CDS data.
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Tables 2-4 shows results of estimation using maximum likelihood for the S&P500
returns and log-differences of CDS spreads for BAC and JPM. Using information
criteria we can see that the GTARCH model or a simpler version of it with γ = 0 is
preferable in most cases. If the γ asymmetry is not used in the model all coefficients
are positive.

The new GTARCH model shows higher persistence for negative returns (compared
to positive returns) in terms of both γ (yesterday’s shock) and δ (previous volatility
forecast). Compared to the GJR-GARCH model the effect of γ is smaller because of
the presence of δ in the model.

All models show high persistence measured by α+ β + .5(γ + δ).

Table 2: MLE for different specifications of the GTARCH model for SPX returns
(01/04/2001- 12/31/2012)

GTARCH GJR-GARCH (δ = 0) GTARCH (γ = 0) GARCH (γ = 0, δ = 0)

μ 0.006 (0.0004) 0.003 (0.016) 0.012 (0.016) 0.048 (0.016)
ω 0.017 (0.002) 0.013 (0.002) 0.020 (0.002) 0.016 (0.002)
α -0.015 (0.007) -0.026 (0.006) 0.068 (0.007) 0.087 (0.008)
γ 0.130 (0.011) 0.155 (0.011)
β 0.885 (0.012) 0.938 (0.007) 0.816 (0.012) 0.903 (0.008)
δ 0.110 (0.018) 0.215 (0.018)

α+ β + .5(γ + δ) 0.990 0.989 0.992 0.990
AIC 2.884* 2.890 2.912 2.939
SIC 2.896* 2.900 2.922 2.947

Table 3: MLE for different specifications of the GTARCH model for log-differences
of CDS spread for JPM (09/11/2001- 08/12/2013)

GTARCH GJR-GARCH (δ = 0) GTARCH (γ = 0) GARCH (γ = 0, δ = 0)

μ -0.067 (0.0615) -0.093 (0.061) -0.131 (0.019) -0.113 (0.057)
ω 0.332 (0.028) 0.234 (0.019) 0.244 (0.023) 0.224 (0.019)
α 0.113 (0.008) 0.094 (0.006) 0.109 (0.004) 0.113 (0.004)
γ 0.023 (0.010) 0.030 (0.008)
β 0.851 (0.007) 0.892 (0.003) 0.868 (0.006) 0.889 (0.003)
δ 0.039 (0.011) 0.046 (0.010)

α+ β + .5(γ + δ) 0.995 1.000 0.999 1.003
AIC 5.4517 5.4514 5.4508* 5.4518
SIC 5.4635 5.4612 5.4605 5.4596*
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Table 4: MLE for different specifications of the GTARCH model for log-differences
of CDS spread for BAC (09/11/2001- 08/12/2013)

GTARCH GJR-GARCH (δ = 0) GTARCH (γ = 0) GARCH (γ = 0, δ = 0)

μ -0.095 (0.0637) -0.044 (0.066) -0.097 (0.049) -0.097 (0.055)
ω 0.352 (0.027) 0.334 (0.027) 0.348 (0.028) 0.327 (0.027)
α 0.121 (0.009) 0.089 (0.007) 0.117 (0.005) 0.119 (0.005)
γ 0.012 (0.013) 0.046 (0.010)
β 0.836 (0.008) 0.884 (0.004) 0.840 (0.007) 0.879 (0.004)
δ 0.065 (0.011) 0.071 (0.009)

α+ β + .5(γ + δ) 0.995 0.996 0.993 0.998
AIC 5.7394 5.7410 5.7389* 5.7418
SIC 5.7511 5.7508 5.7487* 5.7496

5 Markov Chain Monte Carlo Algorithms

Markov Chain Monte Carlo (MCMC) algorithms allow to estimate posterior dis-
tributions of parameters by simulation and are especially useful when the dimension
of parameters is high, since the problems of multiple maxima or of initial starting val-
ues are avoided. A simple intuitive explanation of the Metropolis-Hastings algorithm
is given in Chib and Greenberg (1995).

MCMC algorithms were developed by Chib and Greenberg (1994) for the ARMA
model and by Nakatsuma (2000) and Goldman and Tsurumi (2005) for the ARMA-
GARCH model. Chib and Greenberg (1994) (as well as Nakatsuma (2000)) use the
constrained nonlinear maximization algorithm in the MA block. Alternatively one
can use a Metropolis-Hastings algorithm with a random walk Markov Chain as was
done e.g. in Goldman and Tsurumi (2005). The random walk draws speed up the
computational time of the MCMC algorithms without losing much of the acceptance
rate of the Metropolis-Hastings algorithm. In this paper we propose the algorithms
for a GTARCH model which is an extension of the algorithms developed in Goldman
and Tsurumi (2005).

Let the prior probability for the GTARCH volatility model be given by

π(μ, α, γ, β, δ) ∝ N(μ0,Σμ) N(α0,Σα) N(γ0,Σγ) (9)

× N(β0,Σβ) N(δ0,Σδ)

where μ, α, γ, β and δ are the GTARCH parameters and have proper normal priors
with large variances.
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Consider the Dynamic Conditional Correlations (DCC) model with GTARCH
volatility. The posterior pdf of DCC model is

p(η1, η2, ψ|data) ∝ π(η1, η2, ψ)× L(data|η1, η2, ψ) (10)

ηi = μi, αi, γi, βi, δi

ψ = ωij, α, β

Let n=2 (2 firms, and a market).

The DCC log likelihood is given by

logL = log(Lv(η1, η2) + log(Lc(η1, η2, ψ) (11)

log(Lv) = −0.5
∑

(nlog(2π) + log(σ2
i,t) +

r2i,t
σ2
i,t

) (12)

log(Lc) = −0.5
∑(

log(1− ρ212,t) +
z21,t + z22,t − 2ρ12,tz

2
1,tz

2
2,t

1− ρ212,t

)
(13)

ρ12,t =
q12,t√
q11,tq22,t

(14)

qij,t = ωij(1− α− β) + αzi,tzj,t + βqij,t−1 (15)

(16)

where ri,t and rm,t are daily log returns of firm i and the market correspondingly. The

standardized returns: zi,t =
ri,t√
hit

Step 1: I estimate parameters in blocks for each asset GTARCH model using
random walk draws.

Step 2: using fitted volatilities from step 1 find standardized returns zit and
estimate dynamic correlation between two assets. We estimate parameters in blocks
using random walk draw: (i) ARCH parameters: α and ω12 as part of ARCH, (ii)
GARCH parameters β, (iii) Constant terms ωii = 1− α− β for i=1,2.

Each step is a separate MCMC chain and careful tests of convergence are applied.3

3I use the graphs of draws, fluctuation test (see Goldman and Tsurumi (2005)) and the acceptance
rates to judge convergence. The results are available from author on request.
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6 Data Analysis of MES and SRISK for systemi-
cally important US institutions

We consider Bank of America and JP Morgan Chase ranked in the top three high-
est systemically important financial firms on VLAB website as of December 31,2012-
June 7, 2013 (Tables 5-6).

Table 5: VLAB Systemic Risks for US top 10 institutions on December 31, 2012

US Top 10 SRISK SRISK% RNK SRISK ($ m) MES Beta Cor Vol Lvg MV

Bank of America 19.14 1 101,084 4.3 1.54 0.67 28.8 16.4 125,133.50
Citigroup 15.87 2 83,808 3.62 1.37 0.69 24.9 16.02 116,010.50
JP Morgan Chase 14.36 3 75,859 2.74 1.11 0.74 18.8 13.69 167,144.20
MetLife 8.92 4 47,121 4.24 1.59 0.7 28.6 22.75 35,939.00
Goldman Sachs 7.72 5 40,755 3.71 1.41 0.72 24.6 15.14 61,817.2
Prudential Financial 7.2 6 38,036 3.33 1.38 0.75 23.2 26.44 24,851.80
Morgan Stanley 7.12 7 37,589 3.64 1.42 0.69 25.9 19.42 37,749.00
Hartford Financial Serv 3.4 8 17,950 3.39 1.42 0.68 26.3 30.17 9,790.80
American Intern Group 2.41 9 12,709 4.05 1.41 0.6 29.4 9.6 52,113.50
Lincoln National Corp 2.38 10 12,584 3.59 1.35 0.69 24.7 29.11 7,122.90

Source: http://vlab.stern.nyu.edu on December 31, 2012

Table 6: VLAB Systemic Risks for US top 10 institutions on June 7, 2013

US Top 10 SRISK SRISK% LRMES LVG

Bank Of America 16.5 51.46 14.16
JP Morgan Chase 16.1 54.12 11.58
Citigroup 13.4 57.24 11.66
MetLife 8.7 66.29 17.04
Prudential Financial 8.1 63.04 22.26
Morgan Stanley 8.0 67.76 15.40
Goldman Sachs 6.4 49.50 12.42
Hartford Financial Services 3.1 57.51 20.77
Capital One Financial 3.0 86.21 8.27
Lincoln National Corp 2.6 69.13 22.88

Source: http://vlab.stern.nyu.edu on June 7, 2013

For the systemic risk modeling as in Brownlees and Engle (2012) I use market
data on stock prices, market capitalization and book value of debt for large financial
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institutions. The data are from CRSP for returns and market capitalization for the
period 2001/01/02-2012/12/31. The book value of debt is from COMPUSTAT.

Figure 1 shows the returns data for BAC, JPM and SPX. The dynamic GTARCH
volatility estimated at posterior means of parameters is plotted in Figure 2. While
before the financial crisis JPM had higher level of volatility, during the crisis and
after the crisis BAC volatility level exceeded JPM. Not surprisingly the SPX has
lower equity volatility then both banks. The dynamic correlation of firms with the
market also estimated at posterior means of parameters is given in Figure 3. For
comparison I also present 100-day rolling correlations in Figure 4. Both graphs show
changing patterns of correlation over time with less variability for the DCC-GTARCH
model.

After the equity volatility models were estimated for each bank I found the dis-
tributions of 1% Value at Risk (VaR) and showed them in Figure 5 for a $1 million
portfolio using (a) Normal distribution for the error term and (b) historical simulation
of residuals (bootstrap). These pdfs of VaR show clearly that the VaR are statisti-
cally different for different distributional assumptions of the error term. Since the
historical simulation shows significantly higher VaR it is preferable to use it rather
than Normal distribution.

Figure 6 shows the CDS spreads and log-differences of CDS spreads. The CDS
spreads for BAC and JPM seem to move together to some extent. As with equity
volatility the CDS spreads were higher for JPM before the financial crisis and lower
for the most time starting from the financial crisis. The log-differences of CDS spreads
exhibit volatility clustering similar to equity returns. Figure 7 shows the leverage of
BAC and JPM and the dynamics is similar to the CDS spreads with BAC leverage
highly exceeding JPM leverage starting from the financial crisis.

The systemic risk measures of the marginal expected shortfall (MES), LRMES and
SRISK over time are presented in Figures 8-10. All the graphs use posterior means
of parameters of the DCC-GTARCH model and equations (3)-(6) for computation of
the measures of interest. Half of the sample is used for MES of the first observation
in 2006. We can see that the MES results also show higher risks for BAC starting
from the crisis when BAC leverage increased dramatically and lower MES before the
crisis. However, graphs are close and more careful analysis of the distributions of
MES at a particular point is needed. Graphs of LRMES and SRISK show similar
patterns with peaks during the financial crisis and potential treasury default with
debt ceiling reached in August 2011. The SRISK average values presented in Figure
10 are similar to values reported by VLAB such as in Table 5. For example, at the
end of the sample (2012/12/31) SRISK is about 104 $ billion for BAC and 75.4 $
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billion for JPM using the the GJR-GARCH model as in Brownless and Engle (2012).
The VLAB values are 101 $ billion for BAC and 75.8 $ billion for JPM.4

Finally we consider the whole posterior distribution for MEST , LRMEST and
SRISKT derived from the posterior distributions of σT , σm,T , ρT obtained from the
MCMC draws. Figure 11 shows the distribution of MES and SRISK for JPM at
the end of the sample (T=2012/12/31) which is in the period of low volatility, while
Figure 12 shows these measures in the period of high volatility (T=2008/08/29). We
present the results when the GTARCH, GJR-GARCH and GARCH models are used.
The interesting implication of the GTARCH model is that the results for volatility,
MES and SRISK are lower in a period of low volatility and higher in a period of high
volatility compared to GJR-GARCH and GARCH. GARCH model is less responsive
than other two models to the periods of high and low volatility as it has no asymmetric
news effect that captures risk-aversion. It seems that the TGARCH model captures
risk-aversion better than GJR-GARCH model that is a commonly used model in the
literature.5

For the remainder of the graphs we use the GTARCH model. Figures 13-15 com-
pare the BAC and JPM posterior pdfs of MES, LRMES and SRISK for the low
volatility time (T=2012/12/31). It turns out that their measures of risk are statisti-
cally different with distributions not crossing. This means that in the periods of low
volatility the rankings of BAC being above JPM are justified distinguishing firms in
terms of severity of the systemic risks they impose on the system. Figures 16-17 show
MES and SRISK for JPM and BAC at the time of high volatility (T=2008/08/29)
and we see that the distributions are close to each other with 95% highest posterior
density intervals intersecting. JPM had higher leverage on that day and it resulted in
somewhat higher SRISK but the results for BAC and JPM are not statistically sig-
nificant. The results not presented here to save space indicate that the same pattern
happens at other dates in periods of high volatility.

7 Conclusion

In this paper I considered Bayesian estimation of systemic risks. Using a new
asymmetric GARCH model and capturing uncertainty around the measures I found
that MES, LRMES and SRISK are statistically different for major financial firms at
the times of low volatility, however, they may be very close at the times of uncertainty
such as the financial crisis. This leads to policy implication that banks and other

4The results may the difference in estimation period used and constraints imposed on the GJR-
GARCH model by the VLAB.

5The other asymmetric GARCH model is EGARCH
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systemically important firms can not be taxed differently based on SRISK measure
suggested by Acharya et. al (2010).

The paper has several contributions. This is the first paper to introduce Bayesian
analysis for the systemic risk measures and derive the full distribution of those mea-
sures compared to simple point estimates used in the literature. Second, a new
asymmetric GTARCH model introduced in this paper generalizes popular asymmet-
ric volatility GJR-GARCH model and improves its properties. Third, I provide the
whole distribution of systemic risk measures and show how to distinguish risks of
different institutions. I also estimate GTARCH volatility of log-difference in CDS
spreads showing alternative measures of financial risks.

For the future work I would like to consider different distributional assumptions
for the error term. It would be also interesting to compare the market based measures
of systemic risks used in this paper to the results of macroprudential stress tests.
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Figure 1: Returns: BAC, JPM, SPX
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Figure 2: Annualized Volatility (GTARCH): BAC, JPM, SPX

Figure 3: Dynamic correlation with the market (DCC-GTARCH): BAC, JPM
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Figure 4: 100 day rolling correlation with the market : BAC, JPM

Figure 5: Distribution of 1% quantile (VaR) for the $1 million portfolio if (a) the residuals
are normal and (b) corrected for fat tails: BAC, JPM
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Figure 6: (a) CDS spreads and (b) log-difference of CDS spreads: BAC, JPM

Figure 7: Leverage: BAC and JPM
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Figure 8: Marginal Expected Shortfall (MES): BAC, JPM

Figure 9: Long Run Marginal Expected Shortfall (LRMES): BAC, JPM
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Figure 10: SRISK: BAC, JPM

Figure 11: PDFs of MES and SRISK for different volatility models in the period of low
volatility: JPM (2012/12/31)
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Figure 12: PDFs of MES and SRISK for different volatility models in the period of high
volatility: JPM (2008/08/29)

Figure 13: PDFs of Marginal Expected Shortfall in the period of low volatility: BAC, JPM
(2012/12/31)
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Figure 14: PDFs of Long Run Marginal Expected Shortfall in the period of low volatility:
BAC, JPM (2012/12/31)

Figure 15: PDFs of SRISK in the period of low volatility: BAC, JPM (2012/12/31)

Figure 16: PDFs of Marginal Expected Shortfall in the period of high volatility: BAC,
JPM (2008/08/29)
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Figure 17: PDFs of SRISK in the period of high volatility: BAC, JPM (2008/08/29)
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