DE GRUYTER DOI 10.1515/snde-2012-0018 = Stud Nonlinear Dyn E 2013; 17(5): 521-549

Elena Goldman*, Jouahn Nam, Hiroki Tsurumi and Jun Wang
Regimes and long memory in realized volatility
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1 Introduction

Volatility is an important measure in many financial applications such as option pricing, risk management
and portfolio optimization. In addition volatility is a tradable asset where buyers and sellers gain or lose
depending on volatility realized until maturity. Since the Chicago Board Options Exchange (CBOE) intro-
duced option trading on the volatility of the S&P500 index (VIX), many volatility-based derivatives have been
introduced in the option markets. Trading in volatility derivatives attracted many investors since it provided
more tools for managing portfolio risk, option positions and exploiting the leverage effect of negative cor-
relation between volatility movements and stock index returns.! As the volatility derivative markets grew,
research on volatilities has expanded, and realized volatility based on high-frequency returns has become a
popular measure of volatility.

Since Andersen and Bollerslev (1997) introduced the concept of realized volatility as a square root of the
quadratic variation of intra-daily returns there has been considerable interest in its distribution, modeling,
and forecasting. Fleming, Kirby, and Ostdiek (2003) show the economic value of using realized volatility
for portfolio optimization. A risk-averse investor can improve the performance of her mean-variance effi-
cient portfolio when she switches from daily to intra-daily measure of variances and covariances for volatil-
ity timing. Andersen et al. (2001a,b) provide distribution of logarithmic transform of realized volatility of
foreign exchange returns and stock returns, respectively. Andersen et al. (2003) (ABDL 2003) used a fractional
autoregressive model in order to account for the long memory properties of realized volatility and found that
these forecasts are better than forecasts produced by many popular models of volatility, e.g., daily GARCH,
RiskMetrics, and FIEGARCH. However spikes in realized volatility and nonlinearities in the dynamics are not
incorporated in these models.

Barndorff-Nielsen and Shephard (2004) introduced a bipower variation based on the product of abso-
lute values of consecutive intra-daily returns. Using this measure they separated jumps from the quadratic
variation. Maheu and McCurdy (2002) emphasized nonlinear features of realized volatility for the DM/$
exchange rate and found that 1 day forecasts from a duration dependent Markov-switching ARMA model are
better than from linear models. However their model is restrictive to two regimes with an unobservable state
variable determining the regime and no analysis of long memory properties. Additional papers that used

1 See, e.g., Hafner and Wallmeier (2008) who analyzed variance swap positions for optimal portfolio investments.
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Markov-switching models for international equity returns and volatilities include Ang and Bekaert (2002,
2004), Ramchand and Susmel (1998), Guidolin and Timmermann (2002), and Liu and Maheu (2008) among
others.

As an approximation to a long memory ARFIMA process several papers used a heterogeneous autore-
gressive model (HAR) [see Andersen, Bollerslev, and Diebold (2007), Liu and Maheu (2008), McAleer and
Medeiros (2008) and Corsi (2009) among others]. We do not consider this approximation for long memory,
since we show an efficient way of joint estimation of the fractionally differenced parameters d and threshold
parameters r in ARFIMA and TARFIMA models considered below. However, for the future research it would
be interesting to compare HAR and ARFIMA models.

There are several papers that provide alternative measures of realized volatility adjusting for microstruc-
ture noise [see Bandi, Russell, and Yang (2008), Ait-Sahalia and Mancini (2008), etc]. In the presence of
microstructure noise if sampled at high frequency intervals the realized volatility can become a biased esti-
mate of daily volatility since noise can be time dependent and correlated with closing prices. However, as
suggested in Andersen et al. (2001a,b) if the data is sampled at a lower frequency (they suggested 5 min)
the realized volatility is a good estimate in practice. In this paper, we do not study microstructure noise and
possible adjustments, rather, we proceed with 5-min intra-daily returns (excluding holidays and non-trading
hours) obtained from the NYSE Trade and Quote (TAQ) database.

In this paper, we use a multiple regime threshold fractionally integrated autoregressive and moving
average (TARFIMA) model to analyze the dynamics of the quadratic variation in intra-daily returns. The
advantage of the TARFIMA model is that it is more flexible than a linear model since it is characterized by
regimes with different persistence, long memory and variance, thus accounting for asymmetric dynamics
in regimes. For the periods of extreme volatility, such as during a financial crisis, the TARFIMA model with
regimes based on past volatility seems to be more appropriate than linear models as TARFIMA explicitly
accounts for the dynamic properties of a high volatility regime. The use of the Markov-switching model with
long memory seems to be not as appropriate since its regimes are randomly determined by an unobservable
variable, while for the TARFIMA model regimes are determined by the previous day level of volatility or some
other observable variables.? Threshold models allow the explicit estimation of threshold levels of volatility
that change with regimes.

The TARFIMA model can capture the difference in dynamics of high and low volatility regimes. One
of the prominent features of the data are frequent spikes in volatility. Although the measure based on the
product of absolute consecutive returns removes some jumps there are still many spikes in the data that can
be observed in a regime of high volatility. The TARFIMA model introduced here is quite general because the
parameters of ARMA, long memory and variance change with regime and because it allows us to find mul-
tiple threshold regimes.? In particular, we investigate nonlinearities in the dynamics of quadratic variations
of selected ETF and stock returns. We analyse four major ETFs (DIA, QQQQ, SPY and VXX) and three stocks
from the Dow Jones Index (GE, MSFT and HPQ).

We find that the logarithm of volatility process can be characterized by two regimes of high and low
volatility. The persistence, long memory and variance may change with each regime. This model helps us
understand better the dynamics of intra-daily returns and improves forecasts compared to fractional ARMA
(ARFIMA) models since forecasts based on estimated thresholds regimes of high or low volatility can be pre-
dicted separately. This information indicates the difference in investors behavior in high and low volatility
regimes. We find that the high volatility regime is characterized by a higher variation in realized volatility
which arises because of increased activity in the market. On the other hand, the lower volatility regime has
generally higher long memory parameter. We find that the regimes of high volatility are short-lived and

2 One could use past level of the return rather than volatility as a threshold variable. This choice of the threshold variable may
reflect the leverage effect, which is the asymmetric effect of negative and positive returns on volatility.

3 Many recent papers use threshold autoregressive (TAR) models in economic and financial time series to model the dynamics of
short-term interest rates, real exchange rates, unemployment rate, stock prices, production, and inventories. See, e.g., Tsay (1989,
1998), Hansen (1997), Koop and Potter (1999), Phann, Schotman, and Tschering (1996), Forbes, Kalb, and Kofman (1999), Gold-
man and Agbeyegbe (2007), Dufrenot, Guegan, and Peguin-Feissolle (2008) among others.
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mean-reverting. Also abrupt shifts in volatility may induce long memory characteristics, thus the results of
ARFIMA and TARFIMA model may be different in terms of long memory parameters.

We also find that spikes above estimated threshold in realized volatility captured by upper regimes make
about 15% of observations and are important in modeling and forecasting.*

The TARFIMA model is estimated using Bayesian Markov Chain Monte Carlo (MCMC) algorithms with
efficient jump as an extension of the algorithm in Goldman and Agbeyegbe (2007). The algorithm is extended
for the fractional integration parameter d. The Metropolis-Hastings algorithm with efficient jump allows us
to estimate jointly parameters of all regimes and threshold parameters. For model selection and specification
several in-sample techniques are used such as information criteria, significance of parameters and estima-
tion with and without truncation restrictions imposed on thresholds.

The out-of-sample forecast performance is used in this paper for comparison of TARFIMA and ARFIMA
models. We suggest comparison based on the distributions of mean squared errors (MSE). We illustrate a test
of the dominance of the cumulative density for one model over other models. Using MCMC such a test is easy
to implement and it incorporates the whole distribution of MSE rather than the point estimate frequently
used in the literature for forecast evaluation.

Our paper contributes to the literature of modeling realized volatility as the first to apply a TARFIMA
model with estimated thresholds, changing long memory parameters and variance. We also provide a test
for MSE to select the best model. We show that TARFIMA model provides a better fit to the realized volatility
processes than the benchmark linear fractionally integrated model for 5 day forecasts (as well as longer term
forecasts) in most cases. So far in the realized volatility literature fractional autoregressive models are known
to produce forecasts that are better than the forecasts of other models (ABDL 2003). Our results show that
TARFIMA models tend to outperform ARFIMA models for realized volatility of individual equity returns in the
DJ index. Thus TARFIMA models with several regimes may provide more benefit to investors in the areas of
portfolio optimization and risk management.

The plan of the paper is as follows. In Section 2 we provide the TARFIMA and ARFIMA models, a
Bayesian test of long memory and stationarity and model selection using posterior mean squared errors
(MSE). We also show numerical examples illustrating biases in estimated misspecified nested TARFIMA
models (TARFI, TARMA and ARFIMA). We show that both long memory and regime changes are impor-
tant features of the TARFIMA model and ignoring one of these features produces biases in other param-
eters. In Section 3 we explain estimation results and stationarity tests for TARFIMA, TARFI, TARMA and
ARFIMA models of logarithms of realized volatility. Each of the models considered is nested in a more
general TARFIMA model and the results are sensitive to omitting some features of the data. In Section
4 we perform forecasts and model comparisons for TARFIMA and ARFIMA models. In Section 5 we give
concluding remarks and plans for future research. Appendix with Bayesian posterior distributions and
MCMC algorithms is in Section 6.

2 Model

The quadratic variation or realized variance RV was introduced by Andersen and Bollerslev (1997) as the sum
of squared intra-day returns:

R ‘/t = Zrtim

4 In additional results not reported in this paper we found that realized variance generally produces a better forecast than bip-
ower variation for the stocks in the Dow Jones Index, since the former contains more information about the spikes incorporated
in the dynamics of a high volatility regime.
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wherer,_ arereturns for small intra-daily periods of length A within a day ¢. Five-minute returns are accepted
by many studies as a norm.’ They define the realized volatility as the square root of the quadratic variation
RV~

Barndorff-Nielsen and Shephard (2004) suggested to use the normalized sum of products of absolute
values of consecutive returns (which they called the bipower variation BV) in order to separate jumps from
the total daily variation. In the literature that measures separately the continuous part of total realized vari-
ance measured by BV, and jumps (RV~BV) the statistics for determining the significance of jumps is based
on the size of the relative jump as defined by Huang and Tauchen (2005). This implies that on the days when
volatility is high the jump may not be detected if the size of the relative jump is not large, while on low volatil-
ity days a smaller increase in volatility may qualify as a jump.®

In our study instead of separating BV and jumps we look at several regimes of the RV and compare the
dynamics of high and low volatility regimes. Since we also know from previous studies (e.g., ABDL 2003) that
realized volatility exhibits long memory we propose using a threshold fractionally integrated model with
regimes that are characterized by different time series dynamics, variance and long memory parameters in
each regime.

The regimes are determined by an observed threshold variable. In our case it is the past level of realized
volatility. The lagged realized volatility above the threshold level will determine the high volatility regime.”
In this model the highest volatility regime will be short-lived since overall variance turns our to be mean-
reverting as discussed in Section 3. The current level of volatility determines the forecast of the next period
regime and contains valuable information for portfolio diversification.®

In addition, the distribution of the logarithm of realized volatility may be better captured by a mixture
of several normal distributions from several regimes rather than one normal distribution. The mixture of
normal distributions can approximate well any distribution (Ferguson 1973). Thus, the threshold model with
several regimes is expected to better fit the unknown distribution of the data.’

In the next two subsections we describe the ARFIMA and TARFIMA models, tests of stationarity, model
choice and numerical examples.

2.1 Fractionally integrated ARMA (ARFIMA) model

Let y,=In( RVt” ) or In( BV[” ?). The fractionally integrated ARMA model (ARFIMA) is given by

(1-B)’y,=xy+u, )
u :—®( B) 3
t q)( B) t

O( B)=1+GlB+---+94Bq
®(B)=1-¢ B——¢ B
€,~N(0,07),

where d is along memory fractional integration parameter, y is a vector of regression parameters for x explan-
atory variables, ¢? is variance (showing variation in realized volatility), ®(B) and ©(B) are p-th order and
g-th order polynomials in the backward shift (lag) operator B, respectively. For d>-1 the difference operator
(I-B)? has the binomial expansion

5 Higher frequencies may result in microstructure problems (see Ait-Sahalia, Mykland, and Zhang 2005).

6 See Bollerslev, Law, and Tauchen (2008) for the data example illustrating this point.

7 Alternatively past level of returns or any other observable variable could be determining the regimes.

8 See, e.g., Ang and Bekaert (2002, 2004) showing the benefits of switching regime models for portfolio diversification.
9 Although the logarithm of realized variance looks normal, statistical tests (e.g., Jarque Bera test) often reject normality.
10 In the simplest case x is a constant term.
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(I—B)d=j§nj3f, @

where

k-1-d .
=11 , j=0,1,2,....

0<ksj k

When p=g=0, Brockwell and Davis (1987) state that {y } is a covariance stationary process if —0.5<d<0.5.
If 0<d<1 the ARFIMA model is called a long memory process.

2.2 Fractionally integrated threshold ARMA model (TARFIMA)

Let us consider the following dynamic threshold ARFIMA model (TARFIMA) with multiple regimes for loga-
rithm of realized variance or bipower variation y,=In(RV"?) or In(BV"*)

(j) i
(1—B)d yt =X[')/()) +ut N (3)
@U)(B)
u[:q)(j)(B) 8[ (4)

e,~N(0,(a")?),

where j=1, ..., s+1 with s+1 regimes defined by

=1y,
j=2 r<y,,<r,
. . . (5)
j=s+1 y 2.
We assume in the model above that there are s thresholds r, r,, . . ., r, separating s+1 regimes for y.. The

threshold variable y, , is an observable previous day volatility level with delay parameter, d, set to one (6=1)."
The error term follows ARMA process u~ARMA(p?, q?), where ®0(B) and ©Y(B) are p?-th order and g?-th
order polynomials in the backward shift operator B, respectively.

We note that each parameter in this model {y?, ¢¥, 69, ¢*} takes s+1 values depending on the regime j
where y,_; belongs. This allows a change in dynamics, persistence, and variance of realized volatility depend-
ing on regime.

2.3 Testing nonstationarity and mean reversion

In the ARFIMA and TARFIMA models there are two sources of nonstationarity: fractional integration parame-
ter d and the roots of ®(B). Let p denote the maximum absolute value of the inverse roots of the AR parameters
in the error term u,. We will test for the mean reversion of realized volatility y, looking at the long memory
parameter d” and at the autoregressive root parameter p in each regime. A simple Bayesian unit root test
using the maximum absolute value of inverted roots of AR parameters p was introduced in Goldman et al.
(2001) and we use the same method in this paper. It is important to test the null hypothesis of nonstationarity,

11 One can use any lag of volatility or a combination of several lags, but our analysis shows that the previous day provided the
best fit for the model using MBIC criterion.
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since nonstationarity implies high persistence and long memory of time series. The nonstationarity hypoth-
esis in our setting is jointly given by:

H; :p21 versus H, :0<p<1
and

H,: |d|>0.5 versus H,:-0.5<d<0.5.

Although covariance stationarity requires d<0.5 there is still mean reversion if values of 0<d<1 and the
AR process is stationary. Diebold and Inoue (2001) define a long memory mean-reverting fractionally inte-
grated process for O<d<1. Mean reversion for 0.5<d<1 was illustrated for real exchange rates in Diebold,
Husted, and Rudebusch (1991) and formally proved for ARFIMA(p, d, q) time series in Chung (2001). Both
papers showed that impulse response functions converge to zero.

In the Bayesian approach it is common to use the highest posterior density intervals (HPDI) for hypoth-
esis testing. One could construct a joint HPDI involving both parameters (e.g., for p+d?), however, intuitively
it is easier to interpret these two parameters separately. If the 95% HPDI includes 1 for p or includes 1 for d we
would not reject a unit root. If the HPDI for p does not include 1 and HPDI for d is within [-0.5, 0.5] we would
conclude that the process is stationary. If the HPDI for p does not include 1 and HPDI for d does not include 1
we would conclude that the process is mean-reverting even if d>0.5. Finally if the HPDI for d is positive and
does not include 0 we conclude that the time series exhibits long memory.

2.4 Numerical examples

Tables 1 and 2 present numerical examples illustrating sensitivity of estimated parameters to different model
specifications. We also examine the role of d and p in the stationarity tests.

In example 1 (Table 1) we generated a TARFIMA model with parameters: y={0, 0.33}, $={0.3, 0}, 6=
{-0.1, 0}, 0={0.05, 0.08}, d={0.3, 0.2}, r=0.4. In this example both p'? and d have small values and are in the

Table1 Numerical example 1.

Parameters Mean (st. dev.)
TARFIMA TARMA TARFI ARFIMA

y® 0 -0.009 (0.010) 0.145 (0.094) -0.011 (0.009) 0.003 (0.007)

y@ 0.33 0.302 (0.073) 0.329(0.105) 0.305 (0.072)

oW 0.3 0.199 (0.274) 0.926 (0.028) -0.967 (0.026)

PP 0 0.172(0.367) 0.786(0.116)

ow -0.1 -0.094 (0.263) -0.477 (0.049) 0.981 (0.024)

0@ 0 -0.139(0.389) -0.419 (0.090)

o 0.05 0.051 (0.003) 0.052 (0.003) 0.052 (0.003) 0.057 (0.003)

o 0.08 0.076 (0.009) 0.079 (0.009) 0.076 (0.009)

do 0.3 0.373(0.043) 0.446 (0.038) 0.550 (0.025)

a@ 0.2 0.175 (0.065) 0.180 (0.071)

r 0.4 0.399 (0.002) 0.398 (0.004) 0.399 (0.004)

n2/n 0.193 0.174 0.174 0.174

This table presents posterior means and standard deviations of estimated parameters in a simulated TARFIMA model.
The true parameters are y={0, 0.33}, ¢={0.3, 0}, 6={-0.1, 0}, 0={0.05, 0.08}, d={0.3, 0.2}, r=0.4. The data were generated with
n=1001 obs, n2/n=0.193 is % of observations in the upper regime. Forty lags were used for modeling long memory.

12 Note that in AR(1) process p=|¢|.
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Parameters Mean (st. dev.)
TARFIMA TARMA TARFI ARFIMA

yo 0 -0.078(0.208) -7.880(0.416) 0.009 (0.013) -0.338(0.333)

y@ 1 0.923(0.221) —-7.386 (0.484) -0.009 (0.026)

W 0.95 0.972 (0.008) 0.999 (0.003) 0.924(0.058)

@ 0.9 0.901 (0.027) 0.997 (0.002)

oo -0.1 -0.079 (0.041) 0.453(0.0202) -0.085(0.124)

0@ 0.1 0.156 (0.050) 0.425(0.029)

o 0.1 0.103 (0.004) 0.146 (0.006) 0.191 (0.008) 0.216 (0.010)

o 0.4 0.402 (0.021) 0.449 (0.023) 0.560 (0.028)

dw 0.6 0.538 (0.0334) 0.9995 (0.0004) 0.602 (0.170)

2 0.5 0.395 (0.056) 0.9987 (0.0015)

r 0 0.032(0.030) -0.737(0.130) -3.380(0.190)

n2/n 0.369 0.377 0.385 0.432

This table presents posterior means and standard deviations of estimated parameters in a simulated TARFIMA model.
The true parameters are y={0, 1}, $={0.95, 0.9}, 6={-0.1, 0.1}, 0={0.1, 0.4}, d={0.6, 0.5}, r=0. The data were generated with
n=1001 obs, n2/n=0.193 is % of observations in the upper regime. Forty lags were used for modeling long memory.

stationary region. From the results we can see that the TARFIMA model estimates all the parameters well.
For the generated TARFIMA model data we also estimated TARMA (no long memory: set d=0), TARFI (no
ARMA: set p=0=0) and ARFIMA (no regimes). All the models pass the test of stationarity but show biases in
estimated parameters due to omission of some important variables. For example, both TARMA and TARFI
models identify the threshold r well but in case of TARMA the autoregressive parameters ¢ and the abso-
lute inverse roots of the AR parameters p are overestimated while for TARFI the long memory parameters d
are overestimated. A simpler ARFIMA model significantly overestimates p, 6 and d. The results of ARFIMA
model spuriously show d>0.5 and high persistence in AR due to simplified model neglecting change in
regimes.

In example 2 (Table 2) the parameters of a generated TARFIMA model are y={0, 1}, $={0.95, 0.9}, 6={-0.1,
0.1}, 0={0.1, 0.04}, d={0.6, 0.5}, r=0. Here the parameters indicate high persistence with p<1 and d>0.5 in
regime 1. This process is still mean reverting. In this example estimated TARMA and TARFI model again show
overestimated parameters p (for TARMA) and d (for TARFI). Moreover, TARMA model indicates nonstationar-
ity using 95% HPDI as it includes 1. The 95% HPDI for d in the TARFI model is very close to 1 as well.? As for
ARFIMA model it estimates p and d well on average. However, as the standard deviations of these parameters
are much larger for ARFIMA model the 95% confidence intervals are wider. In particular 95% HPDI for the d
parameter includes 1. In this case we would mistakenly conclude that model is non-stationary and not mean
reverting due to wrong model specification.

As we can see from both examples if the true generating process is TARFIMA then both p and d are impor-
tant in the stationarity tests. If we estimate a model without d the parameter p is biased upward. Alternatively,
if we estimate the model without p then d is biased upward. Finally a model ignoring regimes generally
results in biased parameters as well.

On the other hand, when the true generating process is either ARFIMA or TARMA the TARFIMA model
nesting both of these models works well.*

As for data applications for ETFs in Section 3 we generally find that both p and d are significant in the
model and we focus on TARFIMA and ARFIMA models.

13 For example, the 95% HPDI for d? is (0.998577, 0.999990).
14 Results of these simulated examples are available upon request.
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2.5 Model choice

After models are estimated using MCMC algorithms with efficient jump, explained in Appendix, we compare
models based on the distribution of their out-of-sample mean squared errors (MSE). MSE is the most common
overall measure of forecast accuracy measuring average squared deviations of forecasted values from
observed values.” Using MCMC we can get the posterior distributions of the MSE for each model as explained
below. The model with MSE distribution that dominates all other distributions using cumulative density
function (CDF) is chosen over other models.!¢

The distributions of mean squared errors are obtained as follows. We estimate the model for the sample
of data 1...T and make h-step ahead repeated forecasts based on the fixed sample estimates of parameters. At
each i-th draw of all parameters 69 we find the predicted values of

P ey, ,07)

}A/;?2|(y1" ’yT’j;;'iA’e(l))

(i) (i) (1) (i)
17908 [ G Z0PPP 785 AP YN AN A B

Using MCMC algorithms we obtain the draws of MSE for the predicted values of f/TH,, j=1,...,h:
MSE® = Z( I =y )

where y A(’) is the i-th MCMC draw of the predicted value at time T+j and y,; is the realized value at T+j.

The mean forecast errors (ME) are average differences between predicted values from MCMC draws and
actual values of 2 j=1,...,h:

Z( )A/(T:»)j _yT+)

The mean error measures average bias (positive or negative) and is another measure of accuracy. Using
MCMC we obtained the distribution of MSE and ME for each out-of-sample observation.

The CDF of the distribution of MSE closest to zero indicates which model has the best forecast accuracy.
The model selection is based on min MSE for the posterior modes or medians of their distributions. Since the
distribution of MSE taking only positive values is heavily skewed to the right it makes sense to use the mode
or median rather than the mean of distribution.?”

If we have m posterior predictive densities for repeated 1 day or 5 day forecasts we can find the average of
the modes (or medians) of all distributions. For example:

MMSE, =i2mode( MSE|M,),
i m j i

j=1
where MMSE, is the average of modes of forecasts for model M.. We choose the minimum of MMSE:

min MMSE

i€{1,..,3}

among three competing models.

15 The mean squared errors are commonly used in the classical statistics. The Bayesian analogue of this popular measure is used
in this paper.

16 We note here the advantage of using a Bayesian approach where posterior distributions of any parameters of interest are eas-
ily obtained using MCMC draws as explained below. It is common in current forecasting literature to provide the distribution of
forecasts rather that a point forecast.

17 The mean is highly affected by skewness compared to median or mode of asymmetric distributions.
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3 Data analysis

The models are estimated for log realized volatilities of four ETFs: DIA, QQQQ, SPY and VXX. The data obtained
from the TAQ database are 5-min returns from January 20, 1998 to October 29, 2010. The data for QQQQ starts
on March 10, 1999 while the data for VXX starts on January 30, 2009. As a result the corresponding daily real-
ized volatilities have 3217 observations of trading days for DIA and SPY, 2937 observations for QQQQ and 442
observations for VXX. For DIA, QQQQ and SPY the last 188 observations were left for out-of-sample forecast
evaluation. For VXX due to smaller sample size the last 50 observations were left for forecasts. For compari-
son we also estimated models and provided forecasts for three selected stocks in the Dow Jones Index. Data
for GE and MSFT are for the period January 4, 1993 to December 31, 2004 (3024 observations). Data for HPQ
are for the period May 6, 2002 to December 31, 2004 (671 observations). We used the last 360 observations for
forecast evaluation.'®

Figure 1 shows the square roots of quadratic variations RV for ETFs. We can observe similar dynamics
and multiple spikes in realized volatilities of DIA, SPY and QQQQ. We observe the most extreme spikes in all
indices for the financial crisis in 2008-2009, for the Asian crisis and the burst of the dot-com bubble between
1998-2002 and for the 1 day “flash crash” in May 2010. For the VXX a limited amount of data is available and
we only see the May 6, 2010 “flash crash” spike. A long period of low volatility is observed between 2003
and 2007. Since most of our ETF data includes two crises, a one day largest crash on May 6, 2010 and a rela-
tively long period of low volatility it is not surprising that we use a model with different regimes. The results
from our paper could be applicable to other periods and assets where volatility may change significantly and
abruptly.

RV_DIA RV_QQQQ
8 12
10
6
8
4 6 -
4
24
2
0 0
98 99 0 01 02 03 04 05 06 07 08 09 10 98 99 0 01 02 03 04 05 06 07 08 09 10
RV_SPY RV_VXX
8 20
16 |
6
12 4
4
8
2
4
0 0
98 99 0 01 02 03 04 05 06 07 08 09 10 98 99 0 01 02 03 04 05 06 07 08 09 10

Figure1 Realized volatility of DIA, QQQQ, SPY and VXX.

18 We present only the forecasting results for individual stocks in the paper since the estimated parameters and stationarity tests
are similar to ETFs. The stocks intra-daily data were only available to authors till December 2004.
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Figure 2 shows the logarithms of realized volatilities In(RV*?). Although graphs are smoother one can still
see the spikes and periods of high and low volatility. The advantage of using the TARFIMA model with two
regimes is that it explicitly allows us to account for the dynamics in regimes of high and low volatility. The
change in regimes is modeled once volatility is above a certain threshold level estimated in the model.

Table 3 gives summary statistics of the In(RV*?) showing number of observations (number of trading
days), mean, standard deviation, first order autocorrelation, skewness, kurtosis, and estimated fractional-
differencing parameter d¢ with asymptotic standard error using Geweke and Porter-Hudak (GPH) (1983) log —
periodogram. Following ABDL 2003 using d¢ we can examine long memory properties of realized volatility.
We see that the GPH fractional parameter for ETFs ranges from 0.50 to 0.58 with asymptotic standard errors
depending on number of observations and ranging from 0.025 to 0.056. The periodogram estimates of d¢ all
indicate long memory processes with statistically significant d>0 and close to d=0.5. However, we also notice
that most series are highly autocorrelated with the first degree autocorrelation AR(1) around 0.7-0.9. The GPH
estimator is simple to apply, but as pointed out in Baillie (1996) among others it is substantially biased in the
presence of significant autocorrelation. Therefore, we prefer to use joint estimation of the fractional param-
eter with ARMA parameters using MCMC as described in the previous section. Below we compare estimated
results and forecasting performance of ARFIMA and TARFIMA models.

The results of the estimated TARFIMA model (3)-(5) are given in Table 4. The second and third columns
give thresholds for In( \/ﬁ ) with posterior standard deviations in brackets and corresponding annualized
thresholds for realized volatility. Regime 2 is characterized by volatility levels above 23% for DIA and SPY,
44% for QQQQ and 55% for VXX. The fourth column gives the percentage of observations in the regime of low
volatility below the threshold. The fifth and sixth columns give the estimated maximum absolute value of
autoregressive roots in each regime, where regime 1 is below the threshold and regime 2 is above the thresh-
old. The last two columns give estimates of fractional integration parameters d for each regime. We provide
mean and standard deviation for each parameter in each regime.” Using MBIC information criterion we find
the number of regimes and orders of ARMA model in each regime. For all the ETFs we found that models with
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Figure 2 Log realized volatility of DIA, QQQQ, SPY and VXX.

19 The 95% HPDIs are omitted here to save space. They are available from the authors on request.
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Table 3 Summary statistics of log(~/RV') for ETFs.

ETF N obs Mean St. dev. AR(1) Skewness Kurtosis de (as. std.)
DIA 3217 -0.138 0.520 0.862 0.284 3.145 0.547 (0.025)
QQQQ 2931 0.277 0.546 0.881 0.370 2.648 0.546 (0.026)
SPY 3217 -0.123 0.504 0.859 0.342 3.288 0.583 (0.025)
VXX 442 0.883 0.352 0.658 0.957 5.684 0.500 (0.056)

This table presents mean, standard deviation, first order autocorrelation, skewness, kurtosis and fractional integration param-
eter d° for log realized volatilities. The data are for DIA (1/20/1998-10/29/2010) 3217 obs; QQQQ (3/10/1999-10/29/2010)
2931 obs; SPY (1/20/1998-10/29/2010) 3217 obs; VXX (1/30/2009-10/29/2010) 442 obs. GPH log-periodogram was used
to estimate the fractional integration parameter d¢ based on m:N;‘lﬁ lowest-frequency periodogram ordinates. The asymptotic
standard error for d¢ estimates is w(24m)-1/2,

two regimes are preferred to three regimes and the orders of ARMA(1,1) were selected for the TARFIMA model
in all regimes except for VXX where ARMA(1,1) coefficients were not significant and the model was simplified
setting AR and MA parameters to zero.?®

The long memory fractional integration parameters are positive and significant in both regimes. The
95% HPDI for parameter d is within the interval (0,1) for all cases.” The 95% HPDI includes 0.5 for all series.
Therefore, the long memory parameter shows high persistence. As discussed in Section 2.3 volatility is still
mean-reverting if d<1and p<1 which is the case for our data.

The dynamics in the lower regime is generally more persistent than in the upper regime as can be seen
from fractional parameters d® and d® for DIA, QQQQ and SPY given in Table 4. VXX has higher long memory
parameter in the upper regime.? On the other hand, the AR parameters are similar around 0.3 for DIA, QQQQ
and SPY and are zero for VXX. The implication of the TARFIMA model is that volatility is mean-reverting.
Volatility reverts from the upper to the lower regime of normal volatility. By normal volatility we mean vola-
tility below the estimated threshold values given in the second and third columns of Table 4. The percentage
of observations in the lower volatility regime is between 85% and 90%. This means that shorter-lived spikes
form a significant regime accounting for 10-15% of observations.

Table 4 Posterior means and standard deviations for TARFIMA model of (n(~/RV') for ETFs.

Threshold r Vol ni/n pY p? do d?
DIA 0.395(0.010) 23.56% 0.848 0.328(0.087) 0.243(0.199) 0.673 (0.040) 0.561 (0.076)
QQQQ 1.035 (0.006) 44.69% 0.899 0.328(0.079) 0.236(0.163) 0.658 (0.036) 0.420(0.083)
SPY 0.383(0.013) 23.28% 0.845 0.351(0.096) 0.369 (0.270) 0.646 (0.039) 0.537(0.090)
VXX 1.254(0.036) 55.63% 0.864 - - 0.445 (0.061) 0.720(0.145)

This table presents posterior means and standard deviations (in brackets) for the parameters of two regime TARFIMA model of
log realized volatilities. Vol is annualized volatility at the threshold levelr, n1/n is % of observations in the lower regime. The
data are for DIA (1/20/1998-10/29/2010) 3217 obs; QQQQ (3/10/1999-10/29/2010) 2931 obs;

SPY (1/20/1998-10/29/2010) 3217 obs; VXX (1/30/2009-10/29/2010) 442 obs. For DIA, QQQQ and SPY the last 188
observations were left for out-of-sample forecast evaluation. For VXX the last 50 observations were left for forecasts.

20 The results of orders are not surprising since the ARFIMA(p,d,q) model is equivalent to the infinite lag ARMA model. Thus, the
fractional integration parameter d takes care of higher order lags.

21 For VXX the 95% HPDI in regime 2 is [0.459, 0.994] with the upper bound close to 1. Since number of in-sample observations for
VXX is relatively small and the estimation of TARFIMA model includes many parameters the results have higher standard devia-
tions and wider confidence intervals.

22 Due to smaller number of observations for VXX the standard errors are larger.
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We also found that ¢?, the variance of log volatility In(RV*?) in equations (3)—(5), is significantly higher
for the upper regime compared to the lower regime. Spikes in realized volatility are characterized by a higher
variance of volatility, while a lower regime of volatility has more persistence” and smaller variance.

The results of estimated ARFIMA model (1) are given in Table 5. The second column gives estimated
maximum absolute value of the inverse roots of the AR parameters (p) and their standard deviations. The
third column gives estimates of fractional integration parameters d. For all ETFs the orders of ARMA(1,1) were
selected using the significance of parameters and MBIC criterion.

The results for the TARFIMA model are different from a one regime ARFIMA model in terms of long memory
parameter. Long memory parameter is higher for ARFIMA model compared to each regime of TARFIMA for 3
ETFs: DIA, QQQQ and SPY. VXX exhibits higher long memory in the upper regime of the TARFIMA model. We
noted earlier that we have smaller number of observation for VXX (only about 50 observations in the upper
regime and 300 in the lower regime). However, since VXX itself represents a volatility index it is different from
other ETFs. We are looking at the dynamics of volatility of volatility and higher long memory in the upper
regime may indicate the difference in the behavior of investors in VXX and equity ETFs. Since the VXX data
are limited we would leave it for further research to investigate VXX compared to ETFs.

Table 6 compares the results for ARFIMA, TARMA, TARFI and TARFIMA models. TARMA model which
accounts for different dynamics in ARMA parameters in two regimes shows different persistence in two
regimes. We see that p (the maximum absolute value of the inverse roots of the AR parameters) is much
higher in the lower regime showing higher persistence and showing mean reversion in the upper regime.?
This model does not account for long memory. Since the 95% HPDI for the roots does not include one in any
case we conclude that all series are stationary for the TARMA model.

TARFI model allows different parameters of long memory d® and d® in two regimes but does not account
for ARMA in the error term. We see that for DIA, SPY and QQQQ there is some difference in the long memory
parameters with parameters being slightly higher in the lower regime.? For all models the 95% HPDI for d
does not include one and centers approximately at d=0.5. Thus the stability (mean-reversion) condition is
satisfied.

Finally, as discussed above, for the most general TARFIMA model both conditions for stationarity in
terms of p<1 and d<1 are satisfied.

Overall, we found that volatility is mean-reverting and there is less degree of long memory for the two
regime TARFIMA model compared to ARFIMA model. This results indicate that changes in regimes and long
memory are related and if regimes are not taken into account the persistence in d increases. Unlike long
memory parameters the AR parameters are similar for ARFIMA and TARFIMA models. As observed in the lit-
erature abrupt shifts in volatility may induce long memory characteristics [see e.g., Andersen and Bollerslev
(1998)].

Table 5 Posterior means and standard deviations for ARFIMA model of In(~/RV) for ETFs.

Max abs inverse AR root p Fractional parameter d
DIA 0.297 (0.055) 0.743(0.049)
QQQQ 0.321(0.048) 0.780 (0.053)
SPY 0.335(0.060) 0.728(0.049)
VXX 0.352(0.213) 0.587(0.153)

This table presents posterior means and standard deviations of the parameters for ARFIMA model of log realized volatilities.

The data are for DIA (1/20/1998-10/29/2010) 3217 obs; QQQQ (3/10/1999-10/29/2010) 2931 obs; SPY (1/20/1998-10/
29/2010) 3217 obs; VXX (1/30/2009-10/29/2010) 442 obs. For DIA, QQQQ and SPY the last 188 observations were left for
out-of-sample forecast evaluation. For VXX the last 50 observations were left for forecasts.

23 Except for VXX.
24 For VXX there is no difference in dynamics.
25 However, considering the 95% HPDI the difference in parameters is not significant.
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Table 6 Tests of stationarity for different specifications for ETFs.

ARFIMA TARMA TARFI TARFIMA

DIA
p 0.309(0.216, 0.396) 0.986 (0.977, 0.995) 0.282(0.087, 0.492)
p? 0.362(0.221, 0.516) 0.220 (0.000, 0.626)
dw 0.764 (0.676, 0.863) 0.520 (0.490, 0.551) 0.659 (0.576, 0.742)
d? 0.481(0.393, 0.574) 0.576 (0.425, 0.748)

Stationarity is not rejected in all specifications. Higher persistence in lower regime.

QQQQ
p 0.321(0.225, 0.411) 0.994(0.990, 0.998) 0.328(0.164, 0.471)
p? 0.008 (0.00002, 0.02770) 0.236 (0.000, 0.541)
ao 0.780(0.678, 0.885) 0.510 (0.482, 0.537) 0.658 (0.590, 0.730)
do 0.416 (0.297, 0.538) 0.420(0.267, 0.594)

Stationarity is not rejected in all specifications. Higher persistence in lower regime.

SPY
p® 0.335(0.224, 0.448) 0.980 (0.966, 0.992) 0.351(0.166, 0.543)
p? 0.480 (0.329, 0.640) (0.000, 0.851) 0.369
dao 0.728(0.635, 0.828) 0.518 (0.485, 0.550) 0.646 (0.572,0.722)
d? 0.492(0.399, 0.585) 0.537 (0.375, 0.718)

Stationarity is not rejected in all specifications. Higher persistence in lower regime.

VXX
p 0.352(0.000, 0.742) 0.629(0.292,0.952) (0.002,0.943) 0.474
p? 0.666 (0.366, 0.937) (0.000, 0.872) 0.399
dv 0.587(0.354,0.928) 0.479(0.268,0.777) 0.535(0.216, 0.903)
d? 0.701 (0.483, 0.947) 0.509 (0.153, 0.910)

Stationarity is not rejected in all specifications. Higher persistence in upper regime for TARFI model.

This table presents posterior means and 95% HPDIs (in brackets) for parameters of ARFIMA, TARMA, TARFI and TARFIMA models
of log realized volatilities.

We also found different long memory and volatility of volatility for regimes of TARFIMA model. This
information may also indicate the difference in investors behavior in high and low volatility regimes. The high
volatility regime is characterized by higher variation in realized volatility which arises because of increased
activity of the market. On the other hand, the regimes of high volatility are short-lived and mean-reverting.

In the following section we discuss the forecasting performance of each model.

4 Forecasting and model comparison

In this section, we compare the forecasting performance of the TARFIMA model with linear ARFIMA model.
Estimates of each model for ETFs were first obtained for the in-sample period 1/20/1998 to 02/02/2010 and
then used for repeated 1 and 5 day out-of-sample forecasts for the last 188 days (02/03/2010-10/29/2010).
For VXX the in-sample period is 1/30/2009-08/19/2010 and the out-of sample 50 observations are from
08/20/2010 to 10/29/2010. For individual stocks GE and MSFT the in-sample period was 1/1/1994-7/29/2003
and out-of-sample period was 7/30/2003-12/31/2004. Data for HPQ are for the period 5/6/2002-7/29/2003 and
out-of-sample period was 7/30/2003-12/31/2004. Finally daily VIX volatility index from CBOE website for the
out-of sample period was used for the SPY 22 day forecast comparison.

ABDL 2003 used the fractionally integrated autoregressive model in order to account for long memory
properties of realized volatility and found that their forecasts are better than forecasts produced by many
popular models of volatility, e.g., daily GARCH, RiskMetrics, and FIEGARCH. Our TARFIMA model allows use
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of the information about the thresholds to predict regimes of high or low volatility and different dynamics in
each regime.

In Tables 7-9 we present average posterior modes and medians of mean squared forecast errors (MSE)
and mean forecast errors (ME) for 1 and 5 day forecasts for ETFs. Table 7 shows results for the TARFIMA
model, Table 8 shows results for the ARFIMA model and Table 9 compares results for both models based on
MSE.

From Tables 7 and 8 we see that both models show a small negative bias since ME is negative in most
cases.? The bias may be explained since large spikes in realized volatility such as the “flash crash” are hard
to predict and in such case volatility is underpredicted. Average ME for ARFIMA and TARFIMA models are
similar.

Table 7 Posterior forecast MSE, ME and in sample MBIC for TARFIMA model for ETFs.

1 day MSE 1 day ME 5 day MSE 5 day ME MBIC

Mode Med Mode Med Mode Med Mode Med Mean

DIA 0.142 0.167 -0.063 -0.026 0.205 0.220 -0.041 -0.014 -5597.19
QQQQ 0.111 0.146 -0.061 -0.019 0.191 0.219 -0.024 0.003 -5181.54
SPY 0.113 0.141 -0.069 -0.027 0.186 0.204 -0.051 -0.020 -5667.45
VXX 0.231 0.387 -0.147 -0.032 0.516 0.608 -0.088 0.001 -570.402

Notes: Averages of MSE modes and medians are shown for 1 and 5 day forecasts.
MBIC is evaluated at posterior mean.

Table 8 Posterior forecast MSE, ME and in sample MBIC for ARFIMA model for ETFs.

1 day MSE 1 day ME 5 day MSE 5 day ME MBIC

Mode Med Mode Med Mode Med Mode Med Mean

DIA 0.144 0.167 -0.064 -0.027 0.201 0.221 -0.036 -0.010 -5587.65
QQQQ 0.111 0.146 -0.064 -0.021 0.189 0.221 -0.027 0.004 -5194.53
SPY 0.112 0.140 -0.067 -0.027 0.180 0.205 -0.043 -0.011 -5636.64
VXX 0.200 0.401 -0.150 -0.026 0.487 0.652 -0.085 0.017 -573.06

Notes: Averages of MSE modes and medians are shown for 1 and 5 day forecasts.
MBIC is evaluated at posterior mean.

Table 9 Comparison of MSE and MBIC for TARFIMA and ARFIMA models for ETFs.

1 day MSE 5 day MSE MBIC

Mode Med Mode Med Mean

DIA 0.986 1.000 1.020 0.995 1.002
QQQQ 1.000 1.000 1.011 0.991 0.997
SPY 1.009 1.007 1.033 0.995 1.005
VXX 1.155 0.965 1.060 0.933 0.995

Notes: Averages of MSE modes and medians are shown for 1 and 5 day forecasts.

MBIC is evaluated at posterior mean.

MSE is for TARFIMA model relative to ARFIMA model for which MSE is set to 1.

MBIC is for TARFIMA model relative to ARFIMA model for which it is set to 1 (here we maximize MBIC).

26 However the standard deviations of the ME are large enough to include zero in the HPDIs.
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In terms of the MSE and MBIC criterion, Table 9 summarizes results for both models for ETFs. Relative
MSE is normalized relative to the ARFIMA model. Using the average modes and medians of MSE listed in
Table 9 we can compare the forecasting performance of TARFIMA and ARFIMA at 1 and 5 day forecasting
horizons based on minimum average mode (or median) of MSE as defined in Section 2.5. As we can see from
Table 9 the results are mixed for 1 and 5 day forecasts. For example, for the 5 day forecasts using the modes
of the distributions of MSE we would choose the ARFIMA model, while using the median (or mean) we would
choose the TARFIMA model. Since the distribution of MSE is skewed to the right (MSE takes only positive
values) it is not clear whether we should use the mode or the median. Therefore below we further investigate
the performance of models based on the comparison of the whole distributions of MSE .

Better out-of-sample forecasts do not always imply better in-sample fit to which we turn next. The MBIC
criterion results are mixed showing that ARFIMA is preferred in two cases and TARFIMA is preferred in the
other two cases. However, the TARFIMA model has more that twice number of parameters compared to
ARFIMA and in spite of higher penalty MBIC results are generally close for the two models.

Table 10 reports relative MSE and relative MBIC for three selected stocks: GE, MSFT and HPQ. Here the
results of MSE for all horizons favor TARFIMA model for GE and MSFT and favor ARFIMA model for HPQ.
The sample for these data ends in 2004 and there are no extreme spikes observed in the financial crisis
of 2008-2009 and for the flash crash. However, the data for MSFT and GE contains more extreme spikes
than HPQ due to contagion of Asian crisis in 1998.7 This may explain the preference for TARFIMA model for
stocks when there are extreme events such as Asian crisis. For the in-sample evaluation in spite of more than
twice number of parameters for the TARFIMA model the in-sample MBIC criterion is maximized for TARFIMA
model for all stocks.

Tables 7-10 are summary statistics of forecast performances. They do not give the whole pictures of the
forecasts. Accordingly, we present the graphs of the forecasts as compared to actual volatilities.

Figure 3 shows out-of-sample posterior means of 1 and 5 day forecasts and actual data. The in-sample
data was presented in Figure 1. We can notice that forecasts look very similar and close to actual data except
for the “flash crash” on May 6, 2010.% Figure 4 shows a distributions of 1 and 5 day forecasts for QQQQ for a
single day and the predictive distributions of two models look similar for the 1 day forecast with somewhat
increased difference for a 5 day forecast.

Figure 5 examines annualized SPY realized volatility and its 22 day posterior mean forecasts compared
to implied volatility measured by VIX.? As is commonly found VIX is generally above the historical realized
volatility which could be justified since investors pay a risk premium when buying volatility. As a result there

Table 10 Comparison of MSE and MBIC for TARFIMA and ARFIMA models for GE, MSFT and HPQ.

Firm N obs 1 day MSE 5 day MSE MBIC

Mode Median Mode Median Mean
GE 3024 0.857 0.964 0.928 0.935 1.014
MSFT 3024 0.975 0.994 0.959 0.967 1.004
HPQ 671 1.084 1.056 1.149 1.223 1.825

Notes: Data for GE and MSFT are for the period 1/4/1993-12/31/2004.

Data for HPQ are for the period 5/6/2002-12/31/2004.

The last 360 observations were left for out-of-sample evaluation.

Averages of MSE modes and medians are shown for 1and 5 day forecasts.

MBIC is evaluated at posterior mean.

MSE is for TARFIMA model relative to ARFIMA model for which MSE is set to 1.

MBIC is for TARFIMA model relative to ARFIMA model for which it is set to 1 (here we maximize MBIC).

27 HPQ data starts in 2002.
28 The 95% HPDIs not presented here include actual data except for the flash crash.
29 The data for daily VIX is from CBOE website http://www.choe.com.
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Figure 3 Posterior means of 1and 5 day forecasts of realized volatility for ETFs.

DE GRUYTER

is a positive spread between VIX and our 22 day forecasts. VIX and our forecasts seem to be co-moving with

a spread between them.*®

Figure 6 shows posterior probability densities (PDFs) for standardized logarithms of realized volatility
forecasts for three stocks: GE, MSFT and HPQ. The distributions are close to normal with slight asymmetries.
The forecast residuals can be approximated as normally distributed. Modeling the error term as normally

30 One of the potential applications of threshold type models is to estimate this model for the spread and see when the spread is

above or below threshold levels making trading in options profitable. We leave this for future research.
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Figure5 Posterior means of 22 day forecasts, VIX and actual annualized realized volatility data for SPY.

distributed is a fairly standard assumption for the log(RV*?) in the literature [see Andersen et al. (2001a,b,
2003) and Thomakos and Wang (2003) among others]. Although the Jarque Bera (JB) test rejects normality
for the logarithm of realized volatility data it was shown in Thomakos and Wang (2003) that the JB test is
oversized when the series exhibits long memory or autocorrelation and results in more bias than other tests
of normality. Since we found long memory and autocorrelation of realized volatility for all series the JB test is
not appropriate. Other tests, such as the Kolmogorov-Smirnov test, may or may not reject normality and could
also be sensitive to autocorrelation. The residuals of TARFIMA and ARFIMA models (correcting for autocorre-
lation) are closer to the normal distribution than original data. We note the advantage of using the TARFIMA
model which provides unconditional distribution of the error term as a mixture of normal distributions with
two different variances corresponding to upper and lower regimes. Thus theoretically it should give a better
approximation to the true distribution of the data.
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Figure 6 Posterior pdfs of normalized log realized volatility forecasts for GE, MSFT and HPQ.

In Figure 7 we show posterior cumulative densities (CDFs) of the medians of MSE for the ARFIMA and
TARFIMA models.* The CDFs are calculated on the same set of horizontal points for MSE using the first
degree Taylor approximation.” From the visual comparison of CDFs we see that the distribution of medians

31 Using modes of MSE instead of medians provides similar results.
32 We thank Evgeny Goldman for suggesting the following way to provide a common grid for two CDF graphs. Let q,
and b, denote samples of xs for two CDF graphs. The grid of common x’s is given by x=Ax, i=1,...,nt, where number of

points in the grid nt=min((a, -a, )/A, (b, ~b . )/A)). The first degree Taylor approximation for two CDFs is given by
F(a )-F(a, F(b.)-F(b.
I~‘a(xi)=F(a1.)+(xl.—ai)M and E}(xi):F(bi)+(xi—bi)% correspondingly.
—a i Vi

i-1
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Figure 7 Posterior cdfs of the median MSE(ARFIMA) and median MSE(TARFIMA).

of MSE is closer to zero for the TARFIMA model for the 5 day forecasts of GE and for the ARFIMA model for the
5 day forecasts of HPQ. In other cases TARFIMA and ARFIMA CDFs look very close.

Figure 8 shows the PDFs of the differences between the CDFs in Figure 7 for ARFIMA and TARFIMA
models. The pdfs of the difference provide a statistical test of the difference in the distributions in Figure
7. Positive values indicate that the ARFIMA model outperforms TARFIMA in MSE, while negative difference
shows the superiority of the TARFIMA model. If x is the distance between CDF of ARFIMA and TARFIMA,
then we can define the probability of the TARFIMA model being selected over ARFIMA as given by P(x<0).
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Figure 8 Posterior pdfs of the median F(MSE(ARFIMA))-F(MSE(TARFIMA)).

The results for three companies are as follows. The probability that the TARFIMA model is superior is 0.53
and 0.99 for GE for 1 and 5 day forecasts, respectively. Thus, TARFIMA is a preferred model for GE especially
for a longer-term forecast where the distribution of MSE of TARFIMA dominates that of ARFIMA with 99%
probability. For MSFT the probability of selecting TARFIMA is 0.51 and 0.52 for 1 and 5 day forecasts. We select
TARFIMA models but probabilities of ARFIMA and TARFIMA models are close to 0.5 thus giving similar MSE
distributions. For HPQ the probabilities of TARFIMA are 0.17 and 0.01, thus we select the ARFIMA model with
high probability in each case. These results confirm the results in Table 10 where TARFIMA was selected for
GE and MSFT and ARFIMA for HPQ based on average of MSE medians or modes.
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Figure 9 and Table 11 present results for probabilities of ARFIMA and TARFIMA models for ETFs using the
same method of distribution of CDF differences. The results show that TARFIMA model is selected for all four
ETFs for 5 day forecasts. The probabilities of TARFIMA model for DIA, QQQQ, SPY and VXX are 0.598, 0.748,
0.520 and 0.989, correspondingly.” On the other hand, ARFIMA is selected for three ETFs for a 1 day forecast
with exception of VXX for which TARFIMA is preferred to a 1 day forecast as well. Our overall conclusion is
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Figure 9 Posterior pdfs of the median F(MSE(ARFIMA))-F(MSE(TARFIMA)).

33 Generally these results hold for longer term forecasts such as 10 days as well.
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Table 11 Model choice using the distribution of FIMSE(ARFIMA))-F(MSE(TARFIMA)) for ETFs.

ETF 1 day forecast 5 day forecast

95% HPDI P(ARFIMA) 95% HPDI P(ARFIMA)
DIA (7.E-08, 9.E-08) 0.834 (9.22.E-04, 2.123.E-03) 0.402
QQQQ (-4.E-06, 2.03.E-04) 0.803 (-3.45.E-03, 8.5.E-04) 0.252
SPY (2.E-08, 1.2.E-07) 0.704 (-2.73.E-03, 3.48.E-03) 0.480
VXX (-0.0519,0.0102) 0.436 (-0.1080, 0.0016) 0.011

Notes: P(ARFIMA) is the probability of ARFIMA model computed as P(FIMSE(ARFIMA))—-F(MSE(TARFIMA)>0).

that both models are useful is forecasting the realized volatilities of individual stocks and ETFs with general
preference for TARFIMA model for longer term forecasting.

The TARFIMA model has more than twice the number of parameters than the ARFIMA model, thus it
is better to use large samples for the TARFIMA model. On the other hand, the TARFIMA model captures the
differences in persistence, long memory and volatility in two regimes, thus it can add information for better
forecasts in large samples, especially for multi-day forecasts compared to 1 day forecasts if sample size is suf-
ficiently large to allow better precision in estimation of parameters.

The TARFIMA model longer term forecasts are generally superior to linear models because of infor-
mation about the threshold and regime conditioned on which the forecast is made. As discussed in
Section 3 the difference in dynamics reflects the difference in investors’ behavior in high and low volatil-
ity regimes.

The method of model selection using the posterior distribution of the differences between CDFs of MSE
is new in this paper. It is better than methods based on point MSE estimate comparison since the latter does
not account for uncertainty of MSE estimation. The posterior predictive densities of forecasts and posterior
distributions of MSE provide information about uncertainty and tails of forecasts and provide straightfor-
ward tests of model selection based on the dominance of the distribution of MSE rather than point estimates
of MSE. This is an advantage of the Bayesian MCMC approach used in this paper since posterior distributions
of parameters and functions of interest are easily obtainable from MCMC chain.**

The model choice based on MSE distributions was used in this paper based on the popularity of MSE for
forecasts comparisons. The CDF comparison test explained above can be applied in a straightforward manner
to alternative measures of forecast accuracy, such as mean error or mean absolute error. Moreover we can
compare more than two models based on their CDF distributions and rank them using probabilities of select-
ing each model as above for TARFIMA and ARFIMA.

In the classical approach it has become common to use the Diebold and Mariano (1995) test of superior
predictive ability with many simulated forecasts for obtaining the distribution of MSE. In our future research
we would like to compare the Bayesian approach of model selection with the Diebold and Mariano (1995) test.

5 Conclusion

In this paper, we used a threshold fractionally integrated autoregressive and moving average (TARFIMA)
model to analyze the dynamics and forecasts of square root of quadratic variation in intra-daily returns
also known as realized volatility. We find that the logarithmic transform of volatility processes of four
ETFs and selected three stocks in the Dow Jones Index can be characterized by regimes of high and low
volatility. The persistence, long memory and variance of volatilities may change with each regime. For the
periods of extreme volatility, such as during a financial crisis, the TARFIMA model with regimes based on

34 The GAUSS codes are available from the authors.
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past volatility seems to be more appropriate than linear models as TARFIMA explicitly accounts for the
dynamic properties of a high volatility regime. The use of the Markov-switching model with long memory
seems to be not as appropriate since its regimes are randomly determined by an unobservable variable,
while for the TARFIMA model regimes are determined by the previous day level of volatility or some other
observable variables.

In addition, we also compared the forecast effectiveness of TARFIMA and ARFIMA models. We find
that the TARFIMA model that accounts for a different degree of long memory, persistence and variance
in two regimes in longer term forecasts exceeding five days performs better than the ARFIMA model. A
new test based on the posterior distributions of mean squared forecast errors (MSE) is used for model
comparison.

Given that the ARFIMA model is known to produce forecasts that are better than the forecasts by the
ARMA and other models (ABDL 2003), our results show that TARFIMA models may provide more benefit to
investors in the areas of portfolio optimization and risk where longer term forecasts are important.

Future research may be directed to studying how TARFIMA models can better accommodate jumps,
for example, using market news and individual company news announcements. We could apply Lee and
Mykland (2008) nonparametric tests for jumps since they showed that their test outperforms tests based
on bipower variation. TARFIMA models can be applied to other financial markets and used for identifying
regimes of high volatility. Also we can can compare our Bayesian approach of model selection with Diebold
and Mariano (1995) and other tests in the classical approach.

6 Appendix

6.1 Bayesian estimation of TARFIMA and ARFIMA models

Let the prior probability density function for the TARFIMA model be given by
s+1

a(y, ¢,0,0%, r, )] [N(y", ZV)N(g}”, =) N(6, =)
j=1

XIG(V(()j), 62)1‘)) I( r(j)e[r(j)

low ?

(6)
DI el-05, 1)

wherey, ¢, 0, 0? and d are

y=(", )
1 1 1 1
¢=(¢(1)’---’¢(p()1)a---’¢(1$+)’---’¢;f:+1)))

60=(6%,..., 0% ..., 057, ..., 05)

q(l)’ (s+1)
02:((0(1))2)’ e, (0(s+1))2)

d=(d®,...,d"").

We assume a uniform prior for threshold parameters r where each r? is constrained so that minimum m%
of observations are within each regime. We use m=10% of total number of observations as a minimum sample
size in each regime.” We also assume uniform prior distribution for d in the parameter space between [-0.5, 1].
Other parameters have proper normal-inverted gamma priors with large variances in normal distributions.*

The posterior pdf is

35 m depends on the number of observations, if the sample size is small higher m is recommended. For example, Koop and Potter
(1999) used 15% as a minimum sample size in each regime.
36 This priors are standard in the literature for ARMA models [see Chib and Greenberg (1994) among others].
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MCMC algorithms for ARMA model were developed by Chib and Greenberg (1994). The autoregressive AR
and variance parameters are drawn using a Gibbs sampler and moving average MA parameters are drawn
using a Metropolis-Hastings algorithm. Chib and Greenberg (1994) [as well as Nakatsuma (2000)] use the con-
strained nonlinear maximization algorithm in the MA block. Alternatively one can use a Metropolis-Hastings
algorithm with a random walk Markov Chain as was done e.g., in Goldman and Tsurumi (2005). The random
walk draws speed up the computational time of the MCMC algorithms without losing much of the acceptance
rate of the Metropolis-Hastings algorithm. A simple intuitive explanation of the Metropolis-Hastings algo-
rithm is given in Chib and Greenberg (1995).

In the literature for ARFIMA models there are several ways to handle the fractional difference (1-B)‘y,.
Sowell (1992) used the exact maximum likelihood. Hauser (1999) compares Sowell’s procedure with others
and shows Sowell’s procedure tends to dominate the others. Bayesian estimation of ARFIMA models was
done by Koop et al. (1997), Gil-Alana (2001), and Gouskova (2002), among others. Shimizu and Tsurumi
(2009) compare several procedures from a Bayesian perspective. They show that when the sample size is
large the posterior pdf of d is insensitive to the choice of n, ., where n,__is the truncation point of the infinite
series (2).

In this paper, the ARFIMA and TARFIMA models are estimated using Metropolis-Hastings MCMC algo-
rithms with efficient jump. In order to estimate threshold parameters r=(r,. . .,r) and fractional difference
parameters d=(d,,. . .,d_,) we employ an algorithm with the efficient Metropolis jumping rule that is described
in Gelman et al. (2004) and was used for a threshold ARMA model in Goldman and Agbeyegbe (2008). The
algorithm described below allows efficient simultaneous estimation of multiple thresholds and fractional
difference parameters.”

We briefly describe the algorithm for the case of two and three regimes. We estimate parameters
in blocks: (i) regression parameters, y; (ii) AR coefficients ¢, (iii) MA coefficients 6; (iv) variance o? para-
meters; (v) threshold parameters r; and (vi) fractional difference parameters d.

We describe the procedure below.

(i) Choose initial values for y, ¢, 0, 02, 1, d. Start from crude estimates of mean or mode of the posterior dis-
tribution. Generally it is hard to find a good approximation for mean or mode of threshold distribution
because of an unconventional shape of the likelihood function. For starting values we simply divide the
sample into regimes with equal samples. In case we have two regimes we use the mean value of y, as a
starting point r©, if there are three regimes we divide sample into three equal subsamples to find starting

37 Compared to existing methods of estimating multiple thresholds this method is more efficient, since we avoid estimation on a
grid of points. Simultaneous estimation of multiple thresholds and difference parameters using many dimensions of grid search is
virtually impossible. The Bayesian analogue of a grid search is a Griddy Gibbs sampler withing MCMC which was done for a single
threshold parameter in Phann, Schotman, and Tschering (1996).
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values rl“” and rz(o). Using initial values for d in each regime the series y, is fractionally differenced using
the binomial expansion (2) with some limited number of lags L.
Let the started points be denoted by y@, ¢©, 69, ¢>©, ¥, d. Given initial values r”, r® the

1
samples {y } and {x } are separated into regimes based on y, ,:

J=1yL,<n
j=2 r<y,,<r,
j=3 y_>=1,

(ii) Once the data are separated into regimes given thresholds r the model is transformed into an arranged
ARFIMA model.* After y, is differenced using fractional parameters d in each regime and using equa-
tion (2) with fixed L the model becomes an arranged ARMA model (with different parameters in each
regime), the estimation of which using MCMC is standard [see Chib and Greenberg (1994) who used inde-
pendence chains or Goldman and Tsurumi (2005) who used random walk algorithm]. We draw param-
eters of ARMA in each regime block by block using random walk Markov Chain. We draw parameters of
variance ¢? using the standard inverted gamma distribution. The acceptance rates of ARMA blocks are
controlled by multiplying the variance of the proposal density with a scaling constant.

(iii) Threshold parameters
We use the following procedure with efficient jump.

Let the superscript, (i), denote the i-th draw. Each threshold parameter rj“) (1<j<s) can be drawn
either in a separate block given other threshold parameters, or all thresholds {r"’=(r",..., r'")} could
be drawn in one block, in the latter case the acceptance rate is lower.

We generate

rj(i) "N( TI.(FD , Stdrj(i—l))’

where stdr].( ™ is initially selected as a constant C,» such that the proposal normal distribution covers all

threshold parameter space (e.g., C,=quarter-distance between upper and lower bound for each regime).
After sufficient number of draws mmm we set stdri“‘” equal to the standard deviation of the sample
of accepted draws {rj(”, I=1,...,i-1} multiplied by a scaling constant C. The variance of the proposal
density is therefore proportional to the variance matrix estimated from the simulation.

stdrP=C  stdr({r}), I=n,,...,i-1.

Variance is adjusted using a scaling constant C, so that the acceptance rate is reasonable. Gelman
et al. (2004) suggest optimal acceptance rate of 44% for 1 parameter and 23% for many parameters.
If 11V does not satisfy the condition

low

whererj and rj“” are defined so that regimes below and above rj(” have at least m% of observations,
then generate r].(i) again until it falls within upper and lower bounds. We set m=5%.

We accept r'=(r",..., r'”) with probability

. @ 40 g0 )| data
a,=mn p(ym ¢(f> ) (i—l)l ) e
p(y'"”, 9", 6, r'"V|data)

Otherwise set ro=ri-D,

38 We construct an arranged ARFIMA model in a similar way as Tsay (1989) and others constructed arranged autoregressive
model sorting data y, by regimes.



546 —— E.Goldman etal.: Regimes and long memory in realized volatility DE GRUYTER

Alternatively, one can construct a separate block and acceptance rate for each threshold.
(iv) Fractional difference parameters
We use the following procedure with efficient jump.

Each difference parameter d](.i) (1<j<s+1) can be drawn either in a separate block given other differ-
ence parameters, or all parameters {d’=(d.",...,d""))} could be drawn in one block (in the latter case
the acceptance rate is lower). We generate

d(.”~N(d}(."’D, stdd](.“) ),

]

where stdd; ) is initially selected as a constant C,» such that the proposal normal distribution covers all
parameter space [e.g., C,=quarter-distance between upper and lower bounds (=0.5, 1)]. After sufficient
number of draws mmm we set stdd](, D equal to the standard deviation of the sample of accepted draws
{dl(.”, I=1,...,i—1} multiplied by a scaling constant C. The variance of the proposal density is therefore
proportional to the variance matrix estimated from the simulation.

stdd"=C  stdd({d"}), Il=n,,...,i-1

Variance is adjusted using a scaling constant C, so that acceptance rate is reasonable.
If d” does not satisfy the condition

—O.5<d)(.“ <1,
then generate d](."’ again until it falls within upper and lower bounds.
We accept d”’=(d'",...,d\") with probability

s+1
. B 50 g0 ) 40| data

a,=mn p(%o q?i) D 0 (H)l )’1-
p(y'?, ¢, 0", rY, a7V |data)

Otherwise set d?=d™.

Alternatively, one can construct a separate block and acceptance rate for each parameter d.

After dis drawn the series y is fractionally differenced using binomial expansion (2) with some limited
number of lags 1, We change L and make sure that the posterior pdf of d is insensitive to Myess”

After drawing threshold parameters r and filtering y, with current draws of d” [where regime j is
defined in (5)] the MCMC algorithm steps become identical to the steps in the ARMA model.

As with any MCMC procedure, we make N draws of the parameters in each of the blocks, and we burn the first
m draws. Out of the remaining N-m draws, we keep every h-th draw. We check convergence by testing that the
draws attain mean and covariance stationarity.*

6.2 Choice of the number of regimes and orders

Estimation of a TARFIMA model involves the choice of (i) number of regimes and delay parameter and
(ii) orders of ARMA(p,q) process in each regime. ARFIMA(p,d,q) model choice involves orders p and q.

For each model the orders p, g, the number of regimes s+1 and the delay parameter 6 are chosen using
the significance of coefficients of lags, marginal likelihood, and a modified Bayesian information criterion

39 We found that n, =40 which corresponds to 40 days was sufficient. Since in this paper we generally work with large samples
sizes the problem of truncation does not arise.

40 For example, we use Kolmogorov Smirnov and the filtered fluctuation tests [these tests are studied and compared in Goldman,
Valieva, and Tsurumi (2008)].
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(MBIC) discussed in Goldman and Tsurumi (2005). This criterion is a Bayesian analogue of Akaike informa-
tion criterion given by

AIC==2 Z In(L(p,, q;,s, 0))+2(v+1),

=

where ln(L).()) is a log-likelihood function for regime j and v are degrees of freedom.
The modified Bayesian information criterion is given by:

MBIC=-21n m(x)+2(v+1),

where the marginal likelihood m(x) is computed by the Laplace-Metropolis estimation and evaluated at either
posterior mean or mode.* The MBIC criterion is an in-sample information criterion showing overall fit of the
models penalizing for additional parameters.

For the choice of number of regimes we find the smallest MBIC. In addition we perform sensitivity analy-
sis where estimation of thresholds r, is done with and without restriction ﬂ“w(f)<r).<r“1’("), where upper and lower
bounds are determined by using the minimum percentage of observation for each regime. We look at the
sensitivity of posterior densities of r to imposing the minimum 10%, 5% of observations and no restriction.
Typically we find two regimes with at least 10% of observations in each regime.*

To test whether the dynamics changes with regime one can simulate posterior distributions of differences
in parameters of interest in upper and lower regimes. If there is considerable difference in some parameter’s
distributions it supports the hypothesis of non-linearity of series y..
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