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ABSTRACT

We apply a variety of volatility models in setting the initial margin requirements for
central clearing counterparties (CCPs) and show how to mitigate procyclicality using
a three-regime threshold autoregressive model. In order to evaluate the initial margin
models, we introduce a loss function with two competing objectives: risk sensitivity
and procyclicality mitigation. The trade-off parameter between these objectives can
be selected by the regulator or CCP, depending on the specific preferences. We also
explore the properties of asymmetric generalized autoregressive conditional hetero-
scedasticity (asymmetric GARCH) models in the threshold GARCH family, includ-
ing the spline-generalized threshold GARCH model, which captures high-frequency
return volatility and low-frequency macroeconomic volatility as well as an asym-
metric response to past negative news in both past innovations (ARCH) and volatil-
ity (GARCH) terms. We find that the more general asymmetric volatility model has
a better fit, greater persistence of negative news, a higher degree of risk aversion
and an important effect on macroeconomic variables for the low-frequency volatility
component of the Standard & Poor’s 500 and S&P/Toronto Stock Exchange returns.
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1 INTRODUCTION

The mandatory use of clearing in certain markets is one of the cornerstone reg-
ulations introduced to prevent another global financial crisis. However, the rules
implemented have not been tested in crisis conditions.

Central clearing counterparties (CCPs) base their risk management systems on
a tiered default waterfall relying on two main types of resources provided by their
members: margins (“defaulter pays”) and default fund (mutualized) contributions.
The Principles for Financial Market Infrastructures (PFMI), published by the Com-
mittee on Payment and Settlement Systems–Technical Committee of the Interna-
tional Organization of Securities Commissions (2012), require CCPs to hold enough
capital to cover losses resulting from their two largest participants’ failure and to set
initial margins to cover at least 99% of potential future exposures.

The initial margins are typically set based on value-at-risk (VaR) calculations, as
documented in, for example, Murphy et al (2014, 2016), Knott and Polenghi (2006)
and Houllier and Murphy (2017). The VaRs in this literature are computed using
conditional variances, such as the generalized autoregressive conditional hetero-
scedasticity (GARCH) and exponentially weighted moving average (EWMA) Risk-
Metrics models. These models capture the stylized facts of volatility clustering and
provide a timely risk measure reflecting the most recent news. However, it is also
important to account for the asymmetric response of volatility to negative news (risk
aversion), changes in macroeconomic factors and long-run dynamics. Since VaRs
move with the volatility, the properties of the underlying volatility models, such as
risk aversion and forecasting, are essential for setting initial margin requirements.

As documented in Murphy et al (2014, 2016), Brunnermeier and Pedersen (2009)
and Glasserman and Wu (2018), margin models are typically procyclical and may
negatively impact members’ funding liquidity in times of crisis. There is a need for
margins to adjust to changes in the market and be responsive to risk. Thus, margins
are higher in times of stress and lower when volatility is low. However, this practice
may produce large changes in margins when markets are stressed, which in turn may
lead to liquidity shocks. Brunnermeier and Pedersen (2009) showed that margins can
be destabilizing, with stresses in market and funding liquidity leading to liquidity spi-
rals. Biais et al (2016) studied moral hazard due to the excessively risky behavior of
safer members when less procyclical margins are used; this risky behavior occurs
because a particular member’s default, resulting in a loss exceeding its margin (col-
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lateral) and default fund contributions, is covered by the mutualized default fund
contributions of surviving members. Raykov (2018) further explores the conditions
under which members are motivated to exit the CCP due to a lack of confidence in
the CCP’s stability and finds that some smoothing of margins may stimulate trading
and restore confidence in the market. Cruz Lopez et al (2017) suggest setting mar-
gin requirements based on the CoMargin measure (defined as the VaR of a clearing
member conditional on the financial distress of at least one other member), and thus
taking into account the correlation of losses between the CCP’s participants. They
also note that correction for procyclicality is desirable for CoMargin.

Procyclicality in margin requirements is a concern for regulators with regard to
the stability of the financial system. Under the PFMI, CCPs should adopt forward-
looking and relatively stable margin requirements. CCPs try to reduce the procycli-
cality of their models by using various methods, including setting floors on the mar-
gin. Some of these methods are discussed in Murphy et al (2016). Article 28 of the
European Market Infrastructure Regulation (EMIR) Regulatory Technical Standards
(European Commission 2013) requires the use of at least one of the following three
tools to create margin buffers and reduce procyclicality: setting a floor margin buffer
of 25% or higher to be used in times of stressed conditions; assigning at least a 25%
weight to stressed observations; and setting a floor based on the maximum volatility
over a ten-year historical look-back period. In addition, Murphy et al (2016) suggest
setting limits on how quickly the margins can be raised.

In this paper, we explore the procyclicality of initial margin requirements based on
VaR volatility models. We suggest procyclicality can be reduced using a three-regime
model rather than using ad hoc tools. Moreover, unlike other literature, we introduce
not only the lower bound (floor) but also the upper bound (ceiling) for the initial
margins, as the upper bound is essential at times of liquidity stress in the market. We
apply a threshold autoregressive (TAR) model with three regimes (3TAR).

Finally, we define and use a loss function with different degrees of trade-off
between two competing objectives of the CCP: risk sensitivity and mitigation of pro-
cyclicality. If the margins were allowed to be set within two moving thresholds and
the high-volatility regime were not persistent, margins would be more stable. Such
policy could also be useful to manage expectations at times of stressed liquidity.

This study also reviews GARCH models that can be applied to set margins for
various risk factors. It is common to use risk factors to estimate covariance matrixes
of portfolios. While we focus on equity indexes in this paper, the same models can
be applied to other asset classes, such as oil futures, interest rate swap rates, credit
default swap rates and currency forwards (see, for example, Murphy et al 2016; Knott
and Polenghi 2006). We also demonstrate a flexible volatility model that can capture
a high degree of risk aversion as well as the effects of macroeconomic variables.
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Macroeconomic variables can be used for VaR model stress testing under various
scenarios and improve forecasting, as shown in Engle et al (2013).

Since tail risk measures typically incorporate forecasts of volatility, model spec-
ification is important. GARCH and EWMA RiskMetrics models are popular with
financial practitioners for measuring and forecasting volatility. Engle and Mezrich
(1995) introduced a way to estimate VaR using a GARCH model, while Hull and
White (1998) proved that a GARCH model performs better than a stochastic volatil-
ity model in the calculation of VaR. The Glosten–Jagannathan–Runkle-GARCH
(GJR-GARCH) model (Glosten et al 1993) was used by Brownlees and Engle
(2017), among others, for forecasting volatility and measurement of tail and systemic
risks.

A typical feature of the GARCH family models is that the long-run volatility
forecast converges to a constant level. An exception is the spline-GARCH model
of Engle and Rangel (2008) that allows the unconditional variance to change with
time as an exponential spline, and the high-frequency component to be represented
by a unit GARCH process. This model may incorporate macroeconomic and finan-
cial variables into the slow-moving component and, as shown in Engle and Rangel
(2008), improves long-run forecasts of international equity indexes. In this model,
the unconditional volatility coincides with the low-frequency volatility.

The widely used asymmetric GJR-GARCH model has the problem that the uncon-
strained estimated coefficient of ˛ often has a negative value for equity indexes. A
typical solution to this problem is to set the coefficient of ˛ to zero in the constrained
maximum likelihood. Following Goldman (2017), we use a generalized threshold
GARCH (GTARCH) model, where both coefficients (˛ and ˇ) in the GARCH
model are allowed to change to reflect the asymmetry of volatility due to negative
shocks. We use data for the US and Canadian equity indexes, Standard & Poor’s 500
(S&P 500, SPX) and S&P/Toronto Stock Exchange Composite (TSX) as well as a
numerical example to estimate various asymmetric volatility models. We find that
the most general GTARCH model fits better and does not have a negative alpha bias.
We also find greater persistence and more risk aversion in the GTARCH models.

We add macroeconomic variables for gross domestic product (GDP) growth, infla-
tion, overnight interest rate and exchange rate into the spline model for the slow-
moving component. The spline-macro model results in a smaller number of optimal
knots for SPX and has a better fit for both SPX and TSX.

The paper is organized as follows. Section 2 presents GTARCH and spline-
GTARCH models and tail risks. In Section 3, we perform data analysis for the
S&P 500 and S&P/TSX indexes, while in Section 4 we compare tail risks and per-
form backtests of all models. Next, we analyze procyclicality properties and estimate
a three-regime TAR model for setting a floor and a ceiling on margins as well as
speed limits. Section 5 presents our conclusions and discusses further work. Details
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of maximum likelihood estimation, Monte Carlo simulations showing negative bias
of ˛ in the GJR-GARCH model for unconstrained optimization, and additional
results are presented in the online appendix.

2 ASYMMETRIC THRESHOLD GENERALIZED AUTOREGRESSIVE
CONDITIONAL HETEROSCEDASTICITY MODELS

In this section, we present the GTARCH model and a subset family of models includ-
ing GJR-GARCH, GTARCH0 and GARCH. Next, we add a spline to the GTARCH
model, extending the analysis of Engle and Rangel (2008).

2.1 The GTARCH model

One of the stylized facts in empirical asset pricing is the negative correlation between
asset returns and volatility, commonly explained by risk aversion and the leverage
effect. In a popular threshold ARCH or GJR-GARCH model (Glosten et al 1993), a
negative return results in an asymmetrically higher effect on the next-day conditional
variance compared with a positive return.

Consider a time series of logarithmic returns rt with constant mean � and GJR-
GARCH conditional variance �2t given by

rt D �C ut D �C �t"t ;

�2t D ! C ˛u
2
t C 
u

2
t I.rt�1 � � < 0/C ˇ�

2
t�1;

)
(2.1)

where "t are Gaussian (or other distribution) independent random variables with
mean zero and unit variance, I.rt�1 � � < 0/ is a dummy variable equal to 1 when
the previous-day innovation ut�1 is negative, ˛ and ˇ are GARCH parameters and

 is an asymmetric term capturing risk aversion. The stationarity condition for the
GJR-GARCH model is given by 1 � ˛ � ˇ � 1

2

 > 0.

However, there is a problem with the threshold ARCH model above, since coeffi-
cient ˛ may take negative values in practice. In such a case, a constrained optimiza-
tion imposing positivity on all variance parameters results in ˛ D 0. Goldman (2017)
suggested using a more general threshold GARCH (GTARCH) model:

�2t D ! C ˛u
2
t C 
u

2
t I.rt�1 � � < 0/C ˇ�

2
t�1 C ı�

2
t�1I.rt�1 � � < 0/; (2.2)

where the additional coefficient ı reflects the degree of asymmetric response in the
GARCH term. In this model, both parameters 
 and ı establish the asymmetric
response of volatility to negative shocks. The results below show that allowing both
ARCH and GARCH parameters to change with negative news results in a better stat-
istical fit and smaller information criteria. Moreover, the GTARCH model not only
better captures the leverage effect but also shows greater persistence for negative
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returns compared with its subset GJR-GARCH model. In addition, the coefficients
of � and ! could be allowed to change with the regime of negative news to make the
model even more flexible. The GTARCH is a generalized model with the following
subset of models: GJR-GARCH (ı D 0), GTARCH0 (
 D 0) and GARCH (
 D 0

and ı D 0).
The stationarity condition for the GTARCH model is given by 1 � ˛ � ˇ � 1

2

 �

1
2
ı > 0. The more general GTARCH model shows different dynamics for GARCH

parameters when the news is negative, due to the flexibility of its parameters, and
allows for greater persistence in the regime of negative news. This in turn removes
the negative bias from ˛, which measures the reaction to the positive news. At the
same time, the estimation of the extra parameter ı in the model using the maximum
likelihood is a straightforward extension, as shown in the online appendix.

In addition to GTARCH models, we estimate the EWMA model, defined as

�2t D .1 � �/r
2
t�1 C ��

2
t�1; (2.3)

where � is a smoothing parameter estimated using the maximum likelihood. This
model is not stable but is a benchmark for one-day volatility forecasts, with a typical
estimate of � D 0:94 frequently used in the industry. The EWMA model is popular
for measuring tail risks, as will be discussed below.

Finally, there has been a growing literature on the use of intraday measures of
variance, such as realized variance, computed as the sum of squared returns using
five-minute intervals. Andersen et al (2003) showed that the autoregressive frac-
tionally integrated moving average model can be used for forecasting realized vari-
ance. Recent contributions on using realized volatility (RV) measures for predicting
future variance include the heterogeneous autoregressive model of Corsi (2009) and
the model using VIX by Bekaert and Hoerova (2014). Following this literature, we
evaluate each model in this paper using RV as a benchmark observable variance.

2.2 The spline generalized threshold GARCH (spline-GTARCH)
model

There is a growing literature incorporating economic variables for modeling and
forecasting financial volatility. For example, Officer (1973), Schwert (1989), Roll
(1988), Balduzzi et al (2001) and Andersen et al (2007) found that, even though the
linkages between aggregate volatility and economy are weak, volatility is higher
during recessions and post-recessionary stages and lower during normal periods.
Engle and Rangel (2008) introduced the spline-GARCH model, which combines
high-frequency financial returns and low-frequency macroeconomic variables. They
analyze the effects of macroeconomic variables on the slow-moving component of
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volatility using a spline. This model loosens the assumption of volatility mean rever-
sion to a constant level, which is a property of a stable GARCH model. Instead, the
long-run unconditional variance is dynamic.

Combining the Engle and Rangel (2008) spline-GARCH model with the general
GTARCH asymmetric volatility model in (2.2), we get

rt D �C
p
�t�

2
t zt ;

�2t D ! C ˛

�
.rt�1 � �/

2

�t�1

�
C 


�
.rt�1 � �/

2

�t�1

�
I.rt�1 � � < 0/

C ˇ�2t�1 C ı�
2
t�1I.rt�1 � � < 0/;

�t D c exp
� kX
iD1

wi ..t � ti�1/C/
2
Cmt


�
;

.t � ti /C D

(
.t � ti / if t > ti ;

0 otherwise;
(2.4)

where zt is a standard Gaussian white noise process, �2t is a GTARCH process with
an unconditional mean of 1, mt is the set of weakly exogenous variables (ie, macro-
economic variables) and .t0 D 0; t1; t2; : : : ; tk D T / is a partition of the total num-
ber of observations T into k equal subintervals. The constant term in the GTARCH
equation is ! D .1�˛�ˇ� 1

2

 � 1

2
ı/, and ! > 0 if the GTARCH process is stable.

Since the constant term in the GARCH variance equation is normalized, the long-run
(unconditional) variance is determined by the spline. A higher number of knots (k)
implies more cycles in the low-frequency volatility, while parameters w1; : : : ; wk
represent the sharpness of the cycles.

In (2.4), we simplified the return process with a constant � instead of the time-
variant conditional mean (which could be easily extended for a different process).
In practice, we also dropped the constant w0 in the quadratic spline, as it was
never significant.1 The maximum likelihood estimation (MLE) for joint estimation
of parameters in the spline-GTARCH model is presented in the online appendix.

Both in-sample and out-of-sample daily tail risks can be computed based on the
volatility model used for estimating and forecasting of portfolio returns. The VaR
is typically computed using either a parametric assumption for the distribution of
returns or bootstrapped standardized residuals (also called “filtered historical simu-
lation”, based on the Hull and White (1998) method). If the standardized residuals

1 A similar spline-GARCH specification with constant � and w0 D 0 is used by the NYU Stern
Volatility Laboratory (V-Lab) (see http://vlab.stern.nyu.edu).
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8 E. Goldman and X. Shen

et D .rt � �/=�t still have fat tails after adjustment for time-varying volatility, the
Hull–White method is often used.

3 DATA ANALYSIS

In this section, we perform data analysis for the S&P 500 (SPX) and S&P/TSX
(TSX). The results illustrating estimation and negative bias of ˛ in the unconstrained
GJR-GARCH model and Monte Carlo experiments for the GTARCH model are
shown in the online appendix (Table A1).

The daily SPX data for the period between October 8, 2002 and December 30,
2016 was obtained from the Center for Research in Security Prices (CRSP) in the
Wharton Database, while the TSX data for the period between March 17, 2003 and
March 31, 2017 was obtained from Bloomberg. For both series, we found logarith-
mic returns that resulted in 3500 observations. Realized variances computed using
five-minute returns were obtained from the Oxford-Man Institute of Quantitative
Finance.2

For the spline model with macroeconomic variables, we used similar data to Engle
and Rangel (2008), including quarterly nominal GDP growth rates for both coun-
tries, the daily US federal funds effective rate and Canadian overnight money mar-
ket financing rate, monthly consumer price index inflation for both countries, the
daily trade-weighted US dollar index and US-dollar-to-Canadian dollar (USD/CAD)
exchange rates. We also added monthly unemployment rates for each country.
Table A2 in the online appendix provides the description and data sources for all
variables. It also explains how we transformed macroeconomic variables.

Tables 1 and 2 show the results of the estimated GTARCH family models for
SPX and TSX, respectively. Based on the Bayesian information criterion (BIC)
with a heavier penalty for extra parameters, the GTARCH model without spline is
preferred, while, using the Akaike information criterion (AIC), the spline-macro-
GTARCH is the superior model. Note that both selected models include the most
general GTARCH specification with the presence of asymmetry in both ARCH
and GARCH terms. Moreover, the asymmetric term ı goes up to 0.24 in the SPX
spline-GTARCH model, making the response to negative news even more asymmet-
ric than GTARCH without spline with ı D 0:16. The optimal number of knots in
the SPX spline model is 17, while the number of knots goes down to 8 when we add
macroeconomic variables. Macroeconomic variables are useful in modeling the low-
frequency component, as their presence reduces the number of knots for cycles and
they have a statistically significant effect on long-run volatility dynamics. We model

2 See http://realized.oxford-man.ox.ac.uk/. The number of observations for the RV was slightly
smaller than that for daily returns: 3487 observations for SPX and 3480 observations for TSX.
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Procyclicality mitigation for initial margin models with asymmetric volatility 9

macroeconomic variables for daily volatility forecasting in the slow-moving com-
ponent. Thus, statistically significant macroeconomic variables in the low-frequency
component could be used for the stress testing of VaRs, which is a typical regu-
latory requirement. The following variables are statistically significant at 10% for
predicting the low-frequency volatility component for SPX:

� interest rate (IR) and interest rate volatility (IRV ), both of which have a
positive effect on SPX volatility;

� volatility of the unemployment rate (unempV ), which has a negative effect on
SPX volatility;

� volatility of USD trade-weighted index (USDV ), which has a positive effect
on SPX volatility;

� GDP growth, which has a negative effect on SPX volatility.

All the signs are as expected, except for the volatility of the unemployment rate.
It might be the case that the reduction (rather than increase) in unemployment rate is
driving these results.

The spline-macro (SMacro) model has lower persistence than the spline and no-
spline models. Spline-macro models thus have a faster convergence of variance to
the long-run spline macroeconomic component because the long-run component is
not as smooth as in the simple spline model.

In addition to the volatility models presented in Tables 1 and 2, we estimated
the RiskMetrics EWMA volatility model that is commonly used as a benchmark in
volatility forecasting and VaR estimation. The MLE for the EWMA model resulted
in the following smoothing parameters, with standard error given in brackets and
information criteria:

SPX: � D 0:9409 .0:0049/; AIC D 2:7262; BIC D 2:7279;

TSX: � D 0:9369 .0:0055/; AIC D 2:8222; BIC D 2:8240:

In both cases, the smoothing parameter is very close to 0.94, which is frequently
used in practice. Thus, the US and Canadian indexes have similar EWMA volatility
dynamics. In order to evaluate how parameters change over time, in Table 3(a) we
present the results of the GTARCH and EWMA models for SPX data for three sub-
samples: before the 2008–9 crisis (October 8, 2002 to December 31, 2007; 1278
observations), before and including the crisis (October 8, 2002 to December 31,
2009; 1772 observations) and postcrisis (January 1, 2010 to December 30, 2016;
1773 observations). While the estimates for the different periods are within two
standard deviations of each other, the smoothing parameter for the EWMA model
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TABLE 3 Sensitivity results for GTARCH and EWMA: SPX.

(a) SPX results for three subsamples

GTARCH EWMA‚ …„ ƒ ‚…„ƒ
� ! ˛ ˇ 
 ı �

2002–7 0.01 0.01 0.01 0.89 0.08 0.11 0.96
(0.02) (0.00) (0.00) (0.02) (0.02) (0.04) (0.01)

2002–9 0.00 0.01 0.03 0.90 0.09 0.09 0.95
(0.00) (0.00) (0.00) (0.04) (0.03) (0.04) (0.01)

2010–16 0.02 0.04 0.00 0.75 0.19 0.25 0.93
(0.03) (0.01) (0.08) (0.08) (0.07) (0.07) (0.01)

(b) Rolling-window SPX results

GTARCH EWMA‚ …„ ƒ ‚…„ƒ
� ! ˛ ˇ 
 ı �

Mean 0.00 0.02 0.00 0.84 0.14 0.16 0.93
SD 0.00 0.00 0.00 0.02 0.01 0.03 0.004
Min 0.00 0.02 0.00 0.80 0.12 0.09 0.92
Max 0.01 0.03 0.00 0.89 0.17 0.23 0.94

Part (a) shows the results of estimation of GTARCH and EWMA models for SPX data for three subsamples: Octo-
ber 8, 2002 to December 31, 2007 (1278 observations), October 8, 2002 to December 31, 2009 (1772 observa-
tions) and January 1, 2010 to December 30, 2016 (1773 observations). Standard deviation (SD) values are given
in parentheses for each parameter. Part (b) shows the results of the estimation using rolling windows. Each esti-
mation window size is 2500 observations; we reestimated the models 1000 times. The first window’s start date is
October 8, 2002 and its end date is December 18, 2012. The start date of the last window is November 14, 2006
and its end date is December 30, 2016.

decreases from 0.96 to 0.93 in later periods. This could indicate a more reactive
response to the news (more procyclical) forecast during and after the crisis. Like-
wise, the asymmetric terms in the GTARCH model (
 and ı) increase in later periods,
showing a higher degree of risk aversion and procyclicality.

Table 3(b) presents the summary statistics (mean, standard deviation (SD), mini-
mum and maximum) for the rolling-window results. Each estimation window size is
2500 observations; we reestimated models 1000 times. We can see that mean rolling
window results are close to the whole sample results reported previously.

Table 4 shows the degree of risk aversion in each model, measured by the cor-
relation between returns rt�1 and the log difference of fitted conditional variance
log.�2t =�

2
t�1/ for each model. The more negative correlation implies a higher degree

of risk aversion because of the asymmetrically higher volatility for negative returns.
The table shows that the highest degree of risk aversion is captured by the GTARCH
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TABLE 4 Degree of risk aversion: SPX and TSX.

(a) SPX

GTARCH GTARCH0 GJR-GARCH GARCH EWMA RV

SMacro �0.726 �0.57 �0.658 �0.158
Spline �0.764 �0.6 �0.659 �0.183
No spline �0.755 �0.544 �0.659 �0.192 �0.146 �0.111

(b) TSX

GTARCH GTARCH0 GJR-GARCH GARCH EWMA RV

SMacro �0.744 �0.614 �0.628 �0.213
Spline �0.762 �0.638 �0.661 �0.245
No spline �0.715 �0.584 �0.632 �0.255 �0.190 �0.057

This table illustrates the correlation between returns rt and the log difference of fitted conditional variance
log.�2

t =�
2
t�1/ for each model. The last column presents correlation results for the RV estimate of �t . A more

negative correlation implies a higher degree of risk aversion in the model.

models and the smallest correlation is for the EWMA, GARCH and RV models,
which are symmetrical.

Figures 1 and 2 show the annualized GTARCH volatilities for SPX data, while
Figures 3 and 4 present similar graphs for TSX. We can see that the low-frequency
component is smooth for both SPX and TSX data in the spline-GTARCH model, and
the high-frequency component is close to but generally higher than GTARCH. Once
the macroeconomic variables are added, the dynamics of low-frequency volatility
become much less smooth. This is due to the reaction to macroeconomic volatility in
turbulent times affecting the long-run volatility component. The reaction to negative
news is also amplified by the asymmetric effect in the GTARCH model.

Overall, the US and Canadian market volatilities have similar dynamics and peaks;
however, the Canadian market has a lower level of volatility. For the low-frequency
spline component, the highest level during the financial crisis was 17% for TSX
compared with more than 40% for SPX.

Figures 5 and 6 show RV versus GTARCH for SPX and TSX. We observe that RV
is more procyclical than GTARCH, as the RV graphs exhibit higher peaks and lower
levels in calm periods.
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20 E. Goldman and X. Shen

FIGURE 1 High- and low-frequency volatility: spline-GTARCH for SPX.
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FIGURE 2 High- and low-frequency volatility: spline-macro-GTARCH for SPX.
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4 INITIAL MARGIN MEASURES

In this section, we compute the tail risks and perform backtests on all models. Later,
we analyze the initial margin models’ procyclicality and estimate a three-regime
threshold autoregressive model (3TAR) for setting a floor, a ceiling and speed limits
on margins.
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FIGURE 3 High- and low-frequency volatility: spline-GTARCH for TSX.
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FIGURE 4 High- and low-frequency volatility: spline-macro-GTARCH for TSX.
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4.1 Properties of tail risks for setting margin requirements

Figures 7 and 8 show the logarithmic returns and negative values of one-day
99% VaR for SPX and TSX, respectively. We generated one-day 99% VaRs using
the Hull and White (1998) bootstrap method and the normal distribution. We used
the spline-GTARCH model in these graphs, while all other models are reported in the
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22 E. Goldman and X. Shen

FIGURE 5 RV and GTARCH for SPX.
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FIGURE 6 RV and GTARCH for TSX.
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online appendix (Tables A3 and A4). The margin requirements with the Hull–White
method are higher because this method uses the actual returns distribution with fatter
tails than the normal distribution.

We show in the online appendix that, while there is no one specific model that
always has the highest volatility forecast, those with asymmetric terms (GTARCH,
GJR-GARCH and GTARCH0) produce higher forecasts and tail risks than sym-
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FIGURE 7 SPX log returns and one-day VaR: spline-GTARCH.
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FIGURE 8 TSX log returns and one-day VaR: spline-GTARCH.
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metrical GARCH and EWMA models. Thus, models accounting for risk aversion,
such as GTARCH, are useful to ensure that volatility is not underestimated and suf-
ficient margin requirements are set. Other results in the online appendix illustrate
that models with spline have smaller volatility forecasts than models with spline-
macro at times of low volatility. The opposite is true at times of high volatility. Thus,
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the spline-macro models turn out to be less procyclical. This may be explained by
countercyclical monetary policy as well as faster convergence to a less smooth long-
run spline macroeconomic component, as was found from lower persistence of the
spline-macro models in Tables 1 and 2.

4.2 Model validation

Backtesting is often used in practice for model validation. If the actual breach rate
turns out to be too high, the VaR margin model underestimates risk, which creates
a loss for the CCP. Alternatively, if the breach rate is too low, the VaR model over-
estimates risk and results in unnecessarily high margin charges for the members of
the CCP. Thus, margins can be set based on a VaR that has a reasonable number of
backtest violations that fall within some confidence interval.

Table 5 presents the results of backtesting, with the number of breaches for the
90%, 95% and 99% VaRs for SPX and TSX produced by each volatility model for
the whole sample period. The table shows 95% confidence intervals with lower and
upper bounds for the number of permitted breaches obtained using the Kupiec test.
We report the results for VaRs obtained using the Hull and White (1998) method. Our
results show that all VaRs for the asymmetric volatility models (GTARCH, GJR-
GARCH and GTARCH0) with various quantiles .q D 90%; 95%; 99%/ pass the
Kupiec test at a 5% significance level for both SPX and TSX. At the same time, we
find that the EWMA model failed the test, underestimating risk for both SPX and
TSX for each quantile q. The GARCH model fails the Kupiec test only for SPX data
with q D 90%, overestimating risk.

We also performed the conditional coverage backtests by Christoffersen (1998)
and found that all models pass the test, but GARCH models fail the independence
test at a 5% significance level. However, past research (see, for example, Lopez 1998)
showed the low power of all the above backtests. Moreover, backtesting is only con-
cerned with the number of exceptions and their independence. Regulators are also
concerned with the magnitude of exceptions (margin shortfall) as well as any exces-
sive procyclicality of VaR models that increase the speed of margin calls in times of
crisis.

In addition to backtesting, we ran RV regressions to assess model performance,
similar to Corsi (2009) and Bekaert and Hoerova (2014). Table A6 in the online
appendix shows one-day-ahead in-sample performance using the regressions of log
RV on log variances estimated by each model. We find that the GTARCH model
performs better than all other models for SPX using all three statistics: mean squared
error (MSE), mean absolute error (MAE) and Mincer–Zarnowitz (MZ) R2.
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TABLE 5 Backtesting for SPX and TSX VaR models.

(a) Breaches allowed at 95% confidence interval

Lower bound Upper bound

VaRqD90% 310 350
VaRqD95% 146 175
VaRqD99% 22 35

(b) Breaches for SPX data

Model % VaR GTARCH GTARCH0 GJR-GARCH GARCH EWMA

Spline 90 343 336 336 307
95 169 166 167 160
99 32 33 33 29

SMacro 90 336 327 326 308
95 171 167 166 160
99 34 29 32 30

No spline 90 336 327 326 308 354
95 171 167 166 160 176
99 34 29 32 30 36

(b) Breaches for TSX data

Model % VaR GTARCH GTARCH0 GJR-GARCH GARCH EWMA

Spline 90 341 328 327 321
95 168 163 162 155
99 34 32 31 30

SMacro 90 330 329 332 312
95 164 152 162 151
99 33 33 33 27

No spline 90 330 329 332 312 356
95 164 152 162 151 182
99 33 33 33 27 36

This table presents the number of backtest breaches for VaR of SPX and TSX produced by each volatility model.
VaR was estimated using the Hull and White (1998) method.

The backtesting results and forecast evaluations using MSE, MAE and MZ R2

statistics reinforce the need to use asymmetric volatility models that capture risk
aversion to make sure that margins are set adequately.
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4.3 Procyclicality of the CCP’s initial margin requirements

This section explores the procyclicality of margin requirements based on previously
estimated VaR models and ways to reduce procyclicality.

We suggest imposing both a floor and a ceiling on margins, by using a 3TAR model
and expert judgment based on historical margin settings. We consider a time series
of the logarithm of VaR, yt D log.VaR/, with three regimes. The online appendix
gives a description of the 3TAR model. In this model, we estimate the two thresholds
that separate the regimes and set the thresholds for the floor and the ceiling, thus
providing a margin buffer when volatility is low and using the margin buffer when
volatility is high. The floor and ceiling are not fixed and move over time, reflecting
market conditions based on a rolling-window estimation. As an example, we eval-
uate the appropriateness of the 25% margin buffer suggested in the literature. We
use log.VaR/ for estimation of the 3TAR model, since log transformation smooths
the peaks. Then we exponentially transform the threshold values and report them for
all the volatility models in Table 6. The rolling-window results of using GTARCH
and EWMA models for SPX data with an estimation window of 1000 observations
are presented in Figure 9. We show moving ceiling, floor and unmitigated VaR. We
can see that, while the bounds change over time, reflecting volatility in the estimation
window, the spikes in 2009 and 2011 are considerably smoothed by the ceiling. How-
ever, the lower threshold corresponds to at least the 25% quantile of the estimation
window.3

The 3TAR model provides a straightforward method of simultaneously setting
floors and ceilings for the initial margin that are stable and not too procyclical: the
one-day margins for the whole sample reported in Table 6 are on average bounded
between 1.84% and 2.58% for SPX and between 0.77% and 1.01% for TSX. This
way, when volatility is low, the margins are fixed at a conservative floor level that
corresponds to an additional buffer of about the 29% quantile of the lowest margins
for SPX, and at times of market stress they cannot go above the upper threshold. It
is an interesting coincidence that the estimated lower threshold for SPX using the
EWMA model corresponds to the 25% of observations in the low-volatility regime,
as recommended by the EMIR and Murphy et al (2016).

For TSX, the margin buffer is higher: 32% of observations on average. However, at
times of stress the higher thresholds correspond on average to 38% of the observation
points for both SPX and TSX, which may not appear to be too conservative. We could
add the actual historical margins set by CCPs at times of stress here, to see if the
upper bound would have been higher and would have resulted in a lower percentage
of observations for the high-volatility regime. For comparison, we also estimated

3 Estimation windows with more observations are desirable for estimating more general GTARCH
models with more parameters.
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FIGURE 9 Estimated rolling-window thresholds with three regimes for SPX: (a) GTARCH
and (b) EWMA VaR.
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a three-regime model for the VaR constructed using the RV model, which resulted
in thresholds of 1.57% and 2.27% for SPX and 0.52% and 1.02% for TSX. These
thresholds correspond to approximately 25% of observations in the high-volatility
regime.

Another method for reducing procyclicality, as suggested in Murphy et al (2016),
is based on restricting the growth rate of margins. In our analysis, we estimate two
speed limits for how quickly margins can be increased and decreased. We estimate
the three-regime threshold autoregressive model for the growth rates of margins yt D
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log.VaRt /�log.VaRt�1/ for each statistical model. The results presented in Table A6
in the online appendix show that average thresholds for SPX are�4:73% and 0.89%,
while those for TSX are �3:88% and 0.55%.

In order to evaluate whether margin floors and ceilings (or upper and lower
bounds, for speed limits) would be sufficient in times of crisis, we need to make sure
that the time series of VaRs in the high-volatility regime are stationary and revert
back inside the bounds. The unit root test results indicate that all models pass the
stability test for the SPX, while EWMA and spline models without macroeconomic
variables could be unreliable for setting a sustainable ceiling for TSX. If the margins
were allowed to be set within two moving bounds and the high-volatility regime were
not persistent, margins would be more stable. Such a policy could also be useful to
manage expectations at times of stressed liquidity. This model is the limiting case for
mitigating procyclicality while sacrificing risk sensitivity.

To evaluate the initial margin models, we minimize a loss function with two com-
peting objectives: risk sensitivity (model accuracy) and mitigation of procyclical-
ity. We note that Wong and Ge (2017) used time series similarity testing against a
theoretical “regulatory target model” for measuring the initial margin model perfor-
mance. We do not use any assumed “correct” model and minimize the loss function
while performing a sensitivity analysis of the loss to a different trade-off parameter
w, discussed below.

We introduce a parameter 0 6 w 6 1, which measures the degree of trade-off
between the two objectives. The higher the w, the more weight is given to the pro-
cyclicality correction, with the limiting case of w D 1. If w D 0, there is no correc-
tion of procyclicality and the whole weight is given to the objective of model accu-
racy with the most risk-sensitive model. The CCP may have different preferences for
w, resulting in more or less model accuracy versus mitigation of procyclicality.

Let the loss function L.w/ be defined as a quadratic measure of margin shortfall
and procyclicality. We define the overall loss function as the weighted sum of two
components:

L.w/ D .1 � w/L1 C wL2: (4.1)

Here, L1 measures quadratic shortfall, while L2 measures margin variability:

L1 D
1

T

TX
tDt0

.rt C VaRt /2 I.rt < �VaRt /;

L2 D
1

T

TX
tDt0

�
VaRt �

1

T

TX
tDt0

VaRt

�2
;

where rt is the one-day logarithmic return, VaRt is a one-day 99% VaR forecasted
for time t , T is the number of observations in the sample, t0 is the first observation
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for which a VaR forecast is available and I.�/ is an indicator function equal to 1when
there is a violation of VaR and 0 otherwise.

Table 7 presents the results of loss function components L1 and L2 for each
volatility model. For L1, we present loss, rank and the percentage of VaR viola-
tions. For L2, we present loss and rank. Results for unmitigated VaR (L1 and L2),
mitigated VaR by ceiling and floor (Lflat

1 and Lflat
2 ) and mitigated VaR with speed

limits (Lgrowth
1 and Lgrowth

2 ) are given.
By construction, the following inequalities hold for every volatility model: L1 <

L
growth
1 < Lflat

1 and L2 > L
growth
2 > Lflat

2 . This is because unmitigated VaR has the
highest risk sensitivity (the least shortfall) and the highest variability. Setting ceiling
and floor values results in less risk sensitivity and more stability. The loss based
on speed limits on the VaR is in between, with some smoothness and slightly less
variability than unmitigated VaR.

The RV is the most risk-sensitive measure for SPX, and it is ranked as #1 for SPX
L1. However, as we observe RV ex post and do not produce a forecast for it, it is
not surprising that it performs the best. For the variability (L2; Lflat

2 ; L
growth
2 ), the RV,

spline-GJR-GARCH and spline-GTARCH0 models are preferable for SPX and TSX.
Next, we compute the overall loss function in (4.1) for w D f0; 0:25; 0:5; 0:75; 1g.

In Table 8, we rank the overall loss function within each group of models: with-
out spline; with spline; and with spline and macroeconomic variables (SMacro).
For w D 0, there is no procyclicality mitigation, and the overall loss is equal to
unmitigated L1. For w D 1, the procyclicality mitigation is the highest, and the
overall loss is equal to either Lflat

2 or Lgrowth
2 depending on the mitigation tool used.

As we increase the trade-off parameter, the rank might change between unmitigated
(w D 0) and mitigated margin (w > 0:25), but then the ranks are the same for
all weights w D f0:25; 0:75; 1g. Thus, the exact value of w is not crucial, and any
weight for mitigating procyclicality produces a robust model selection.

Overall, with some degree of procyclicality mitigation, the minimum loss is found
with the ceiling and floor rather than speed limits. The two best models with the
ceiling and floor are RV and GTARCH0 for SPX and spline-GTARCH0 and spline-
macro-GTARCH for TSX. Since intraday measures of volatility may not be gener-
ally available for some assets, we choose the second best model, which is GTARCH0
(with asymmetry in the GARCH term only). As for TSX, from Table 6 we find that
spline models without macroeconomic variables may have unit roots in the high-
volatility regime. Thus, we chose a spline-macro-GTARCH model that incorporates
asymmetry in both the ARCH and GARCH terms as well as macroeconomic vari-
ables. Adding macroeconomic variables helps to reduce model procyclicality for
the TSX index. At the same time, simpler asymmetric models with procyclicality
correction through ceilings and floors may be sufficient (as in the case of SPX).
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The above method is a simple approach to test the sustainability of margin models
using a three-regime threshold autoregressive model.

5 CONCLUSIONS AND FURTHER DEVELOPMENT

In this paper we considered asymmetric GARCH models in the threshold GARCH
family and proposed a more general spline-GTARCH model that captures high-
frequency return volatility and low-frequency macroeconomic volatility as well as
an asymmetric response to past negative news in both ARCH and GARCH terms.

We then applied a variety of volatility models, including asymmetric GARCH,
GARCH and EWMA, in setting initial margin requirements for CCPs. Since VaR
and expected shortfall calculations are typically volatility based, the properties of
the underlying volatility models, such as risk aversion, are essential for setting initial
margin requirements.

Finally, we showed how to mitigate the procyclicality of initial margins using a
three-regime threshold autoregressive model. We set the floor and ceiling on the VaR
using estimated thresholds. This model is the limiting case for mitigating procycli-
cality while sacrificing risk sensitivity. In order to evaluate initial margin models,
in addition to backtesting and volatility forecast evaluation, we introduced a loss
function with two competing objectives: risk sensitivity and mitigation of procycli-
cality. The trade-off parameter between these objectives can be selected by the CCP
depending on their specific preferences. We found that asymmetric volatility models
generally perform better under various trade-off parameters. In future research, more
international equity and other assets could be tested.
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