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Abstract: Virtual reality (VR) is an appealing approach for increasing the engagement and attention 
of patients during rehabilitation. Understanding how motor control changes in real vs. virtual 
scenarios is a research challenge in terms of validating its administration. This study evaluates 
muscle synergies when subjects conduct throwing tasks in virtual reality. Seventeen healthy subjects 
performed 20 throws both in a virtual environment and in real one as they threw a ball with both 
dominant and nondominant arms. The electromyography (EMG) signals of 11 muscles of the upper 
limbs were recorded. Non-negative matrix factorization was used to extract muscle synergies. The 
cosine similarity was computed to assess the consistence of muscle synergy organization between 
virtual and real tasks. The same parameter was used to establish the inter-subject similarity. A three-
synergy model was selected as the most likely. No effects of virtual reality and arm side on 
neuromuscular organization were found. Forearm muscles, not necessary for ball holding and 
release, were comprised in the activation synergies in the virtual reality environment. Finally, the 
synergies were consistent across subjects, especially during the deceleration phase. Results are 
encouraging for the application of virtual reality to complement conventional therapy, improve 
engagement, and facilitate objective measurements of pathology progression. 
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1. Introduction 

Virtual reality (VR) is a tool for replicating or augmenting real environments with varying levels 
of involvement [1]. Immersive virtual reality provides a more comprehensive sensing experience, by 
leveraging interface tools such as a video headset [2], or devices for delivering tactile information [3]. 
A non-immersive version, whereby the visual interface is a computer screen, is generally easier and 
faster to implement [4]. The natural engagement of subjects with VR has fueled its adoption beyond 
gaming, making VR-based solutions available for a wide range of experiences, ranging from 
education to physical rehabilitation [5,6]. 

Physical rehabilitation is used to facilitate the recovery of patient impairments linked to injury 
or pathology. Considering incidents that cause damage to the central nervous system (CNS), 
including stroke, or neurodegenerative diseases, such as Parkinson’s, it is critical to understand the 
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importance of the research related to effective solutions for motor rehabilitation. Stroke, for instance, 
affects about 10 million people every year [7], often causing the demise of brain cells in the motor 
cortex area, resulting in the inability to perform typical daily-life gestures. Motor rehabilitation 
should be initiated, during the so called “sub-acute” phase, to administer structured exercises 
involving physical interaction within an environment, thereby fostering motor re-learning [8]. 

After the subacute phase, where patients experience a rapid recovery to realize much of their 
original abilities, they enter the chronic phase, which is characterized by a stabilized damaged tissue 
condition, and a slower rate of recovery from motor impairment [9]. Regarding those who suffer from 
neurodegenerative diseases, during this phase, patients often experience a lack of motivation, which 
may lead to them dropping out of a rehabilitation program [10]. Over the past decade, portable and 
low-cost solutions for introducing rehabilitation into a domestic environment have been investigated 
[11,12]. These solutions, derived from robot-mediated therapy (RMT) [13], involve simple devices, 
thereby rendering them suitable for the chronic stage, where assistive mechanical power might be 
not be needed. The ability to move a rehabilitation program to a domestic environment is expected 
to encourage participation in the program [14]. In supporting this goal, VR is often leveraged in this 
context to increase motivation and engagement [15,16]. Scalona et al. proposed a protocol for the 
evaluation of motor learning in a 3D space using a low-cost haptic device in a VR environment [17]. 
Summa et al. [12] designed VR-based upper limb training for PD patients, which involved 3D arm 
gestures, to decrease bradykinesia. Pastor et al. [18] used a computer game to facilitate the 
rehabilitation of stroke survivors, while Laut et al. [19] tested the efficacy of navigating a virtual 
environment to evaluate and train the motor performance of children with cerebral palsy (CP). 

The general paradigm of these solutions is the interaction with VR through a physical device, 
such as haptic joysticks [19,20] and/or motion trackers [21]. In the latter category, Microsoft Kinect 
has been used in experiments as a low-cost markerless solution for human motion tracking [22,23], 
as it offers a tremendous potential to serve as a natural user interface [24]. As a result, the number of 
proposed solutions for portable rehabilitation protocols, leveraging the Microsoft Kinect and VR, has 
rapidly increased [25]. In some cases, the same kinematic indices of performance, introduced in RMT 
and in kinematic evaluations based on optoelectronic systems (OS), were implemented on data 
obtained through the Kinect, as an assessment tool for motor control abilities [26]. 

However, although real and VR motor tasks can be considered equivalent in terms of kinematics, 
the pattern of induced muscular activation in these two scenarios may be different. Sabatini [27] 
demonstrated that a cohort of healthy subjects exhibited different patterns of muscle movement while 
performing the same reaching task with the upper limb. These differences were more evident when 
analyzing electromyography (EMG) signals than kinematic data, thereby demonstrating a potential 
difference in the internal feedforward motor command of subjects. On the other hand, Kang et al. 
compared the muscle activity with fully immersive VR to real archery motions in order to investigate 
the effects of VR. The authors found no significant difference between real and virtual tasks in terms 
of muscle activity patterns [28]. These findings encouraged us to question whether virtual reality can 
be used for rehabilitation, thereby studying different muscle activation by means of muscle synergies. 

According to the muscle synergies theory, the EMG-enveloped profiles of a set of muscles 
involved in a complex coordination task can be represented as the linear combination of a reduced 
number of command signals, known as motor primitives (or factors) with a corresponding weight 
for each muscle [29]. This factorization can represent a coordinating activation of different muscles, 
during the different phases of a gesture, in a space of reduced dimensionality [30]. This theory was 
initially applied to repetitive and automated gesture, such as gait [31–34] and balance adjustments 
[35–37]; since then, several applications in clinics, sports, and robotics have been proposed [38]. 
Repetitive movements, such as gait, although complex, are highly automated in normally developed 
subjects and, thus, imply a reduced activation in the motor cortex area with respect to upper limb 
gestures. Several studies have demonstrated consistency in factorization parameters (motor 
primitives and weights vectors) across groups of subjects performing the same task, thereby 
supporting the hypothesis that those factors might represent internal strategies that the central 
nervous system (CNS) adopts for managing the complexity of motor coordination [32,39–42]. 



Electronics 2019, 8, 1495 3 of 17 

Although the transfer of these techniques from lower limb tasks to upper limb ones is difficult, 
due to a greater variety and complexity of upper limb gestures [43], an analysis of muscle synergies 
still represents a consistent method for evaluating the coordination of muscle activation. In reference 
to throwing, Cruz-Ruiz and colleagues showed that three muscle synergies were sufficient to 
reconstruct the EMG data relating to overhead football throws [44]. However, to the best of authors’ 
knowledge, no studies have been conducted to evaluate the muscular organization in Virtual Reality 
environments during repetitive tasks. Thus, it could also be leveraged to evaluate the similarity of 
VR-based vs. real tasks in rehabilitation, in terms of the similarity in muscle activation. The aim of 
this study is the validation of a typical VR-based upper limb rehabilitation gesture in terms of muscle 
activation. In particular, we sought to evaluate whether a VR task, replicating throwing a ball, can 
elicit a similar level of muscle synergies involved with a real throwing task. The throwing task was 
selected as a gesture involving the coordinated activation of different muscles to move the upper limb 
against gravity, and therefore represents a specific, yet paradigmatic, gesture for home VR-based 
rehabilitation. An additional goal was to evaluate the inter-subject similarity in muscle synergy 
organization when subjects with a comparable health status are asked to perform a throwing task, 
while gaining an understanding of the role of each synergy in the throwing phases. The outcomes of 
this study could prove to be useful when implementing rehabilitative protocols, based on VR, thereby 
potentially encouraging adherence and adaptability to rehabilitation programs, while quantifying 
performance. 

2. Materials and Methods 

2.1. Experimental Setup 

The experimental setup consisted of a laptop, where the non-immersive VR scenario was 
implemented, a Microsoft Kinect 2.0 sensor, for interacting with the VR, and a 16-channel wireless 
EMG system (Cometa Zero Wire, Milan, Italy). 

The VR scenario was developed in the Unity 3D game engine and it is reported in Figure 1. It 
consists of an essential three-dimensional environment, which is comprised of a green floor separated 
on the horizon by a blue background. The virtual object to be thrown has the shape and size of a ball, 
while a wooden barrel is used as the target to hit. To make the ball appear on the screen, the player 
has to raise their arm. Once the ball appears at the bottom of the screen, the subject can proceed with 
a throwing motion that is reproduced by the Kinect sensors with the movement of the ball on the 
screen. The speed of the ball is proportional to the hand movement speed. A counter at the top left of 
the screen returns the number of successful launches (ball–barrel collision), thereby providing 
immediate feedback on user performance. 

 

Figure 1. Game scenario developed in Unity 3D. 
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2.2. Experimental Protocol 

Seventeen subjects (nine males, eight females, aged 25 ± 4) with no history of injuries or 
pathologies to the upper limbs were enrolled in the study. Fifteen out of the seventeen subjects were 
right-handed. 

Each subject was instrumented with EMG probes on 11 muscles of a side, as reported in Figure 2, to 
record the muscle activity during the experimental tasks. 

 

Figure 2. Electrode placements: (1) Deltoideus Anterior (DeltA); (2) Deltoideus Medius (DeltM); (3) 
Trapezius Descens (TrapD); (4) Biceps Brachii (BB); (5) Triceps Brachii long head (TBL); (6) Pectoralis 
Major (PM); (7) Flexor Carpi Ulnaris (FCU); (8) Brachioradialis (BRD); (9) Deltoideus Posterior (DeltP); 
(10) Trapezius Trasversalis (TrapT); (11) Latissimus (Lat). 

In order to minimize the impedance due to skin and sweating, the selected areas were initially 
rubbed with alcohol. Electrodes were then placed in accordance with the placement guidelines of the 
European project SENIAM (surface electromyography for the noninvasive assessment of muscles) [45]. 

Each subject was asked to perform two throwing tasks. The first task consisted of throwing a 
virtual ball within the Unity 3D platform: the movement began with the arm raised and ended in a 
position of rest, which was with the arm parallel to the body, and recorded for a total duration of 5 
seconds. The distance of the subjects from the computer was 2 meters. The second task required a 
throwing motion with a ball (diameter 6.5 cm, weight 30 g) against the wall, where a representation 
of the barrel was positioned. The distance from the target remained unchanged with respect to the 
virtual task. The two tasks were performed with both the dominant and nondominant arm. The 
dominant arm was selected as the one commonly used, by the participant, for writing. For each task, 
20 launches were performed for a total of 80 launches. Before proceeding with the tests, a reference 
electromyographic signal, addressed as baseline, was recorded with the subject in the rest position, 
guaranteeing that there was no muscle activation. The order of four tasks was randomized across the 
subjects to avoid bias in the data due to the same task sequence. In order to avoid a visual 
familiarization with the task, each subject was tested individually. The entire protocol lasted 
approximately 30 minutes per subject. 

The research was approved by the local ethical committee (Sapienza University of Rome) and it 
was conducted according to the principles expressed in the Declaration of Helsinki. Written informed 
consent was obtained from each participant. 
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Figure 3 depicts a subject with EMG probes performed both the real task and the virtual one. 

  
(a) (b) 

Figure 3. A subject with electromyography (EMG) electrodes performing both the real task (a) and 
the virtual task (b). 

2.3. Data Processing 

For the purposes of extracting muscle synergies, the recorded electromyographic signals were 
processed by conventional filtering and grinding methods [44,46] implemented in MATLAB (R2014a, 
MathWorks, Natick, MA, USA, 2014). In particular, the baseline was removed from the raw signals, 
and then filtered. A fourth-order Butterworth low-pass filter with cutoff frequency equal to 450 Hz 
was applied to outline the upper limit of the band of interest. The same filter, but in high-pass mode 
with a cut-off at 10 Hz, allowed the elimination of noise at low frequencies and the continuous 
residual component. A Notch filter centered at 50 Hz removed the power network component. Then, 
the signal was rectified, and an additional fourth-order Butterworth filter was applied in a step-by-
step mode with a cut-off frequency of 6 Hz to extract the envelope. 

Subsequently, each EMG signal was resampled at 1000 samples in order to normalize the 
duration of a single throw. The amplitude of each EMG vector was normalized with respect to the 
maximum activation, defined as the maximum value across all repetitions and all tasks. Finally, the 
20 signals of each repetition related to the task were concatenated one after the other, attaining an 
EMG matrix (m × n) for each subject and each task by grouping the n-sample signals of the m 
considered muscles by row. For each experimental condition, m was equal to 11 and n was equal to 
20,000, that is 20 launches × 1000 frames. 

The matrix obtained was used as the input of the non-negative matrix factorization (NNMF) 
algorithm for the extraction of the muscle synergies. NNMF was selected among other factorization 
algorithms because it provides the most reliable outputs [32]. The algorithm allowed us to compute 
the muscle synergy vectors (𝑊 ) and the temporal activity patterns (𝐶 ), as a linear combination 
reported in Equation (1) [47]: 𝑬𝑴𝑮 = 𝑊𝐶௦

ୀଵ + 𝜀;  𝑠 ≤ 𝑚 (1) 
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where s corresponds to the number of muscle synergies and ε represents the difference between the 
acquired EMG matrix and the reconstructed one. The reconstructed EMG was obtained by applying 
the linear combination of Wi and Ci in the output of NNMF. The muscle synergy vector Wi is 
independent of time and it is composed of only positive weights, indicating the involvement of each 
muscle in the i-th synergy. Instead, the temporal activity pattern Ci is a time-dependent waveform, 
considered as a representation of the neural command for the activation of the i-th synergy. The 
following parameters were set: 50 replicates and 1000 maximum iterations for minimizing the 
squared residual between acquired and reconstructed signals [48]. We performed the computation 
11 times, with the s value ranging from 1 to 11. Figure 4 shows a schematic explanation of the muscle 
synergy theory. 

 

Figure 4. Schematic explanation of muscle synergy theory. Reconstruction of four muscles with the 
linear combination of two muscle synergies (blue and red). 

2.4. Data Analysis 

When selecting the minimum number of muscle synergies (NoS), we used variability account 
for (VAF) index. This index allowed us to assess the similarity between the acquired and 
reconstructed EMG signals [39] and it is computed as the uncentered Pearson’s coefficient, expressed 
as a percentage between the two signals. Pearson’s coefficient allowed us to quantify the linear 
correlation between two vectors [49]. Two different VAFs were computed for the selection of NoS: 
the first one, named global VAF (VAFglo), was calculated between the acquired and the reconstructed 
EMG matrices, while the second one, named local VAF (VAFloc), was calculated between the acquired 
and the reconstructed EMG signals of each muscle. VAFglo and VAFloc were calculated for all of the 
tested s values. Finally, for each subject and each task, NoS was selected as the model with the 
minimum number of synergies that simultaneously met the two selection criteria: VAFglo ≥ 90% and 
VAFloc ≥ 75% [39,50]. Thus, the NoS represents the minimum number of synergies required to obtain 
a proper representation of the muscle activation data by using the linear combination in Equation (1). 
Then, the mode of NoS across all of the four examined tasks was selected individually for each subject 
and the respective model was considered for analysis. It should be noted that the model with the 
lower number of muscle synergies was used for the successive analyses when more than one muscle 
synergy model had the same number of occurrences for the examined subject. As it is well-known 
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that the order of synergies in the model is not consistent among different runs of the NNMF algorithm 
[48], we performed a K-means cluster analysis to select and to order similar synergies among tasks, 
individually for each subject [51]. In particular, the most correlated synergy vectors that fell within 
one cluster according to the K-means outputs were considered related to the same i-th synergy in the 
selected model among tasks. Successively, individually for each subject, we evaluated the robustness 
of the muscle synergy vectors among the four tasks by computing the cosine similarity (cossim), which 
is defined according to Equation (2) [32]: 

cos ( , ) x y
sim x y

x y

⋅
=
W W

W W
W W

 (2) 

where Wx and Wy represent the pair of tested Ws in turn. This index can assume values ranging from 
0 to 1, corresponding to no- and perfect similarity, respectively. The threshold value for cossim to 
assume similarity was set to 0.60 [52]. Thus, we performed four comparisons: (i) VR-based task vs. 
real task performed with the dominant arm— CSୖ/ୖ ୈ; (ii) VR-based task vs. real task performed with 
the nondominant arm— CSୖ/ୖ ୈ ; (iii) dominant vs. nondominant arm in performing VR-based 
tasks— CS/ே ோ ; and, (iv) dominant vs. nondominant arm in performing real tasks— CSୈ/ୈ ୖ . 
Comparisons were obtained individually for each subject and each synergy in the selected model. In 
addition, the similarity of the overall selected model, i.e., considering all of the i-th synergies together, 
was computed by independently averaging the obtained cossim for each synergy in the model, 
individually for each subject and each task. This similarity analysis allows a comparison of the muscle 
synergy organization when performing throwing tasks in VR environments and as a real task with 
both the dominant and nondominant arm. 

When assessing the similarity across all subjects in performing the same task, the most common 
model found considering all the examined tasks and all the subjects together was selected. Then, after 
a new application of k-means analysis for the reorder, the cossim index was computed for each task. 
We performed 136 comparisons, i.e., 17 subjects, for each task and each synergy in the selected model. 
Then, the mean and SD of cossim across the comparisons were computed to quantify the robustness of 
the muscle synergy vectors W in same task performed by different subjects. 

2.5. Statistical Analysis 

All data, with the exception of the NoS, were tested for normality with the Shapiro–Wilk test 
and the results showed a normal distribution. For all the following tests, a significance level equal to 
0.05 was set. Statistical analysis was conducted using SPSS software package (v17.0, IBM-SPSS Inc. 
NY, USA, 2015). 

A two-way Friedman’s nonparametric test was performed to evaluate statistical differences in 
the NoS, considering the tasks (virtual vs. real) and the side (dominant vs. nondominant), as the 
independent variables. 

To verify whether the similarity in the overall model obtained in the comparison between virtual 
reality task and real one was influenced by dominance in the side, a t-test was performed to compare CSୖ/ୖ ୈ  and CSୖ/ୖ ୈ  related to the overall model. Moreover, another t-test was performed on CS/ே ோ and CSୈ/ୈ ୖ related to the overall model to investigate if the similarity obtained in the 
comparison between dominant and nondominant arm is influenced by the task. 

Finally, the influence of the ith synergy on the cossim values obtained in the between-subject 
analysis was tested through one-way ANOVAs, independently for each task. This test evaluates 
whether the similarity across subjects depends on the specific synergy in the model. When statistical 
differences were observed, a Bonferroni’s test for multiple comparisons was performed. 

For technical details about the statistical tests performed, please see [49]. 

3. Results 

The NoS values for each task and the computed modes for each subject are reported in Table 1. 
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Table 1. Number of muscle synergies (NoS) for each task and each subject and mode across tasks 
related to each subject. D and ND stand for dominant and nondominant, respectively. 

ID 
VR Task Real Task 

Mode 
D ND D ND 

ID1 3 3 3 2 3 
ID2 3 3 4 3 3 
ID3 3 3 2 3 3 
ID4 3 4 3 3 3 
ID5 3 4 3 3 3 
ID6 3 3 3 3 3 
ID7 3 2 2 4 2 
ID8 2 2 3 2 2 
ID9 2 3 3 3 3 
ID10 4 3 2 3 3 
ID11 2 2 3 2 2 
ID12 3 4 3 4 3 
ID13 4 4 3 3 3 
ID14 3 3 3 3 3 
ID15 2 3 3 3 3 
ID16 3 4 3 3 3 
ID17 4 5 4 4 4 

Considering all of the subjects and all of the tasks, the NoS ranged from 2 to 5. Only one subject 
(ID14) selected the same number of muscle synergies in the four examined tasks. Considering each 
subject individually, the NoS mode was equal to 3 for thirteen out of seventeen subjects, while the 
remaining four showed a mode equal to 2 and 4, in three cases and one case, respectively. No 
differences were found with the statistical analysis on the median value of NoS as a function of both 
the task and the side (p = 0.58). 

The results of the similarity analysis among the different tasks are reported in Tables 2–5. 

Table 2. CSୖ/ୖ ୈ values of the similarity analysis for each subject related to the i-th synergy in the 
model, and the overall model, for the comparison: real task (R) vs. virtual task (VR), performed with 
the dominant side (D). Grey cells indicate value under the similarity threshold. 

Real Task vs. Virtual Task—Dominant Side 

ID I-sy II-sy III-sy IV-sy 
Overall 
Model 

ID1 0.95 0.91 0.95 - 0.94 
ID2 0.84 0.58 0.84 - 0.75 
ID3 0.91 0.93 0.98 - 0.94 
ID4 0.97 0.81 0.93 - 0.91 
ID5 0.90 0.85 0.92 - 0.89 
ID6 0.86 0.96 0.95 - 0.93 
ID7 0.84 0.67 - - 0.75 
ID8 0.93 0.94 - - 0.93 
ID9 0.71 0.71 0.88 - 0.77 
ID10 0.84 0.89 0.97 - 0.90 
ID11 0.98 0.85 - - 0.91 
ID12 0.96 0.96 0.84 - 0.92 
ID13 0.93 0.85 0.94 - 0.90 
ID14 0.88 0.84 0.77 - 0.83 
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ID15 0.72 0.86 0.56 - 0.71 
ID16 0.96 0.96 0.90 - 0.94 
ID17 0.95 0.97 0.70 0.57 0.80 

When comparing the real task vs. virtual task performed with the dominant side, the cossim was 
always above the similarity threshold, with the exception of three cases. In particular, values ranged 
from 0.56, which is the value obtained in the III-synergy for ID15, to 0.98, which is the value obtained 
in the I-synergy for ID11. The similarity of the overall model ranged from 0.71 to 0.94 and it was 
always above the similarity threshold. 

Table 3. CSୖ/ୖ ୈ values of the similarity analysis for each subject related to the i-th synergy in the 
model, and the overall model, for the comparison: real task (R) vs. virtual task (VR), performed with 
the nondominant side (ND). Grey cells indicate values under the similarity threshold. 

Real Task vs. Virtual Task—Nondominant Side 

ID I-sy II-sy III-sy IV-sy Overall 
Model 

ID1 0.96 0.88 0.84 - 0.89 
ID2 0.98 0.90 0.94 - 0.94 
ID3 0.88 0.80 0.50 - 0.72 
ID4 0.81 0.93 0.85 - 0.86 
ID5 0.87 0.87 0.60 - 0.78 
ID6 0.85 0.64 0.98 - 0.82 
ID7 0.77 0.80 - - 0.79 
ID8 0.98 0.95 - - 0.96 
ID9 0.88 0.90 0.93 - 0.90 

ID10 0.95 0.93 0.98 - 0.95 
ID11 0.96 0.84 - - 0.90 
ID12 0.98 0.98 0.98 - 0.98 
ID13 0.61 0.96 0.85 - 0.80 
ID14 0.93 0.73 0.67 - 0.77 
ID15 0.89 0.99 0.96 - 0.95 
ID16 0.74 0.92 0.73 - 0.79 
ID17 0.65 0.89 0.99 0.75 0.82 

When comparing the real task vs. virtual task performed with the nondominant side, the cossim 
was always above the similarity threshold, with the exception of one case. In particular, values ranged 
from 0.50, which is the value obtained in the III-synergy for ID3, to 0.99, which is the value obtained 
in the II-synergy for ID15 and III-synergy for ID17. The similarity of the overall model ranged from 
0.72 to 0.98, and it was always above the similarity threshold. 
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Table 4. CSୈ/ୈ ୖ value of the similarity analysis for each subject related to the i-th synergy in the 
model and the overall model for the comparison: dominant (D) vs. nondominant (ND) side used to 
perform the virtual task (VR). Grey cells indicate value under the similarity threshold. 

Dominant vs. Nondominant Side—Virtual Task 

ID I-sy II-sy III-sy IV-sy 
Overall 
Model 

ID1 0.94 0.90 0.93 - 0.92 
ID2 0.78 0.87 0.67 - 0.78 
ID3 0.76 0.86 0.88 - 0.83 
ID4 0.90 0.84 0.59 - 0.78 
ID5 0.97 0.95 0.86 - 0.93 
ID6 0.81 0.58 0.97 - 0.79 
ID7 0.79 0.73 - - 0.76 
ID8 0.91 0.85 - - 0.88 
ID9 0.80 0.41 0.91 - 0.71 

ID10 0.52 0.80 0.98 - 0.76 
ID11 0.99 0.94 - - 0.96 
ID12 0.93 0.92 0.83 - 0.89 
ID13 0.74 0.84 0.95 - 0.84 
ID14 0.77 0.91 0.92 - 0.87 
ID15 0.73 0.91 0.89 - 0.84 
ID16 0.55 0.81 0.83 - 0.73 
ID17 0.74 0.82 0.58 0.94 0.77 

When comparing the dominant vs. nondominant side in performing the virtual task, the cossim 
was always above the similarity threshold in all but six cases. In particular, the values ranged from 
0.41, which is the value obtained in the II-synergy for ID9, to 0.99, which is the value obtained in the 
I-synergy for ID11. The similarity of the overall model ranged from 0.71 to 0.96, and it was always 
above the similarity threshold. 

Table 5. CSୈ/ୈ ୖ value of the similarity analysis for each subject related to the i-th synergy in the 
model and the overall model for the comparison: dominant (D) vs. nondominant (ND) side used to 
perform the real task (R). Grey cells indicate values under the similarity threshold. 

Dominant vs. Nondominant Side—Real Task 

ID I-sy II-sy III-sy IV-sy Overall 
Model 

ID1 0.91 0.82 0.81 - 0.85 
ID2 0.74 0.87 0.71 - 0.77 
ID3 0.85 0.90 0.69 - 0.81 
ID4 0.94 0.67 0.47 - 0.69 
ID5 0.92 0.82 0.61 - 0.78 
ID6 0.91 0.88 0.97 - 0.92 
ID7 0.78 0.51 - - 0.64 
ID8 0.87 0.84 - - 0.85 
ID9 0.89 0.53 0.98 - 0.80 

ID10 0.90 0.96 0.98 - 0.94 
ID11 0.96 0.80 - - 0.88 
ID12 0.99 0.97 0.91 - 0.96 
ID13 0.68 0.74 0.92 - 0.78 
ID14 0.72 0.86 0.56 - 0.71 
ID15 0.85 0.92 0.94 - 0.90 
ID16 0.89 0.89 0.71 - 0.83 
ID17 0.79 0.92 0.94 0.75 0.85 

When comparing dominant vs. nondominant side in performing the real task, the cossim was 
always above the similarity threshold in all but four cases. In particular, the values ranged from 0.47, 
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which is the value obtained in the III-synergy for ID4, to 0.99, which is the value obtained in the 
I-synergy for ID12. The similarity of the overall model ranged from 0.64 to 0.96, and it was always 
above the similarity threshold. 

No statistical differences were found among the similarity obtained for the overall model in all 
of the four performed comparisons: (i) VR-based task vs. real task performed with the dominant arm; 
(ii) VR-based task vs. real task performed with the nondominant arm; (iii) dominant vs. nondominant 
arm in performing VR-based tasks; and, (iv) dominant vs. nondominant arm in performing real tasks. 

Finally, the most common model that was selected, considering all of the subjects, was the one 
with three synergies, and it was used for between-subject analysis. Additionally, the similarity was 
assessed only with data gathered from the dominant side; moreover, as previously mentioned, no 
differences were found between the two sides of the upper limb. To clarify the composition of the 
muscle synergy vectors, Figure 5 shows the mean values for the W when considering all of the 
subjects for the three-synergy model in both the real and the virtual task. 

 

Figure 5. Mean value of muscle synergy vectors in the three-synergy model related to the real task 
and the virtual task. The mean was realized by averaging across subjects the muscle synergy vector. 
For visualization purposes, muscle synergy vectors are normalized to unity. Muscle numbers: 1: 
DeltM; 2: TrapD; 3: TBL; 4: PM; 5: FCU; 6: BRD; 7: DeltP; 8: TrapT; 9: LAT; 10: BB; 11: DeltA. 

Mean values and standard deviations of between-subject similarity regarding the three-
synergies model are reported in Figure 6. The mean value was always above the similarity threshold 
of 0.60. Statistical differences between the second synergy in the model (II) and the other two (p < 
0.01) were found for the VR task, while the similarity related to the third synergy is different from 
the other two in the real task (p = 0.01). 
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Figure 6. Mean value and standard deviation of cossim for the between-subject analysis. RT and VR 
stand for real task and virtual reality, respectively. * indicates statistical differences. 

4. Discussion 

The present study sought to evaluate changes in muscle synergy organization based on 
throwing tasks in healthy young subjects, when performed in a virtual reality environment. 
Differences between real and virtual throwing gestures were calculated by comparing the number of 
muscle synergies and by analyzing the similarity of their inner composition. In addition, the role of 
dominant and nondominant arm was investigated, as well as the inter-subject similarity of the muscle 
synergy vectors. 

The range of selected muscle synergies across the examined subjects, i.e., 2–5, and the mode 
value equal to 3 confirms the ability of the CNS to reduce the complexity of muscle organization in 
performing physical activities [29,42,53]. In particular, the most likely value found in this study is in 
line with a previous study focused on throwing tasks [54], thereby demonstrating that a three-
synergy model is sufficient to describe the activation of the trunk and upper limb muscles during 
overhead throws in healthy, young subjects. 

By analyzing the results of the statistical analysis on NoS, we can conclude that the execution of 
the overhead throws, in a virtual reality environment, does not cause a variation in the number of 
muscle synergies enrolled when performing the task. As a further confirmation, cosine similarity 
analyses showed that the weights related to the i-th synergy and to the overall model are highly 
similar between virtual and real throws, when considering the dominant and nondominant arm. 

This finding indicates that there is no significant difference in the neuromuscular organization 
of virtual reality throws and real ones, thereby suggesting that healthy subjects are able to activate 
the same muscles with a similar timing despite the absence of a real object to grab. Therefore, when 
the subjects launched a virtual ball, their neuromuscular organization is no different from the one 
adopted when clutching a real one, as well as in terms of activating the muscles that control hand 
grasping. As depicted in Figure 5, synergy weights related to the forearm muscles, i.e., #5 and #6, are 
significantly involved, suggesting activation of the muscles during the execution of the task. This 
indicates that VR tasks are able to elicit activation of muscles involved in an already-known real-life 
gesture, even when generation of muscle force is not needed. The importance of this specific finding 
to the field of rehabilitation is not minor, considering that the forearm muscles are the ones mostly 
involved for the execution of daily life activity and, consequently, their rehabilitation is fundamental 
after upper limb injuries [55]. 

Similar outcomes were reported by Kang et al. [28], who showed similar activity of upper limb 
muscles in performing both virtual and actual archery motions. Moreover, the equal benefits of 
virtual reality, in terms of physical recovery in traditional clinical practices, have already been 
demonstrated in several clinical applications, such as training a patient with neurological diseases 
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[56] to turn while walking, increasing the endurance of the pelvic floor muscle in postmenopausal 
women [57], recovering upper limb movements in poststroke patients [58], and improving the 
smoothness of movement in children with cerebral palsy [59]. 

From this perspective, our results allow us to consider virtual reality as a viable tool for 
rehabilitation programs related to the recovery of muscle control and as an alternative to traditional 
therapies. It is worth noting that a virtual reality approach is characterized by several advantages 
compared to a traditional one [60]. Firstly, it has been accepted that serious games implemented in a 
VR environment increase patient engagement and simplify complex tasks [6]. Secondly, virtual 
reality guarantees the adaptability and variability of programs tailored to the patient’s needs [58]. 
Thirdly, it is also possible to quantify patient performance and store the subject’s data for remote 
access [61]. Finally, the use of VR in home-based rehabilitation can help to reduce the medical costs 
[61]. Thus, considering the aforementioned results, the effects of physical treatment can also be 
simulated by the motion activities performed in a VR environment. Additionally, this approach could 
be useful for coaching when designing suitable training programs in sports, where overhead throws 
are fundamental gestures; this includes baseball, volleyball, javelin throws, and so on [62]. 

However, we should also consider that a more complete VR, as opposed to conventional 
therapy/training, is still questionable; Laver et al. suggested that the benefits of VR in improving 
upper limb functionality when performing physical tasks may occur when used as an adjunct to 
traditional methods and was used to increase the overall therapy/training time [63]. 

When comparing the dominant and nondominant upper limb, a highly similar muscle synergy 
organization was observed when performing both the virtual and real throws. Similar results were 
also observed in the muscle activation of healthy subjects in reaching tasks [64], in handgrip strength 
to grip a basketball [65], and in force and angular velocity related to the arm in baseball pitchers [66]. 
Conversely, difference in kinematics were noted in the dominant arm during the throwing tasks; 
specifically, the nondominant arm was characterized by significantly lower elbow flexion and in the 
external shoulder rotation at the start of the arm acceleration phase [67]. These findings suggest that 
a virtual task leads to a variation in the kinematics of the subject’s adaptation to a different 
environment, while motor control remains similar and is only related to the activation level. 
Considering our findings and those already published in the literature, we can state that if the 
rehabilitation/training program is focused on the recovery of muscle activity, there is no requirement 
that it be tailored to the dominant arm. Conversely, a specific program should be designed if 
kinematic improvement is to be achieved. 

Concerning the inter-subject similarity, the three-synergy model revealed itself as consistent 
across different subjects, both considering the i-th synergy and the overall model. As previously 
mentioned, this synergy model is in line with the one shown by Cruz-Ruiz et al. [54]. Then, by 
observing the inner composition of the muscle synergy model, a specific role can be assigned to each 
synergy in the model when considering the biomechanics of the overhead throws [68]. More 
specifically, a throw can be partitioned into three main phases: (i) arm cocking, which is the 
movement performed until the maximum shoulder rotation; (ii) arm acceleration, which is from the 
maximum shoulder external rotation until ball release; and (iii) arm deceleration, which is from the 
ball release until the arm stops internally rotating. Thus, considering the muscles involved, the first 
synergy in the model is consistent with the biomechanical actions needed during the cocking phase, 
especially when enrolling trapezius and deltoideus and FCU and BB for the grip of the ball. The 
second and third synergies, instead, primarily include muscles that are involved during the 
deceleration and acceleration phase, respectively. 

These findings suggest that healthy subjects are characterized by similar muscle activation 
patterns, especially in the deceleration phase, considering the statistical differences found for the 
cossim value related to the second synergy. This result can be ascribed to the absence of specific 
expertise of our subjects during overhead throws. In fact, it has already been verified that arm cocking 
and arm acceleration are primarily responsible for improved throwing [69]; thus, it is conceivable 
that these two phases are more variable in nonexpert subjects. 
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5. Conclusions 

In this paper, we have analyzed the effects of virtual reality on muscle synergies in throwing 
tasks performed with both dominant and nondominant arms. In addition, inter-subject similarities 
were assessed. The outcomes of our study endorse virtual reality as a valuable tool for 
rehabilitation/training programs that focus on muscle recovery, since a very high similarity was 
found in a real throwing task. No differences were found between dominant and nondominant arms, 
and a three-synergy model can be considered consistent across subjects when describing the muscle 
activity in overhead throwing. Future work will include the combination of EMG outputs with 
kinematic ones to enable a more in-depth analysis of the throwing motion. 
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