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ABSTRACT

We are building a cognitive vision system for mobile robots that works in a manner similar to the human vision
system, using saccadic, vergence and pursuit movements to extract information from visual input. At each fixation,
the system builds a 3D model of a small region, combining information about distance, shape, texture and motion to
create a local dynamic spatial model. These local 3D models are composed to create an overall 3D model of the
robot and its environment. This approach turns the computer vision problem into a search problem whose goal is the
acquisition of sufficient spatial understanding for the robot to succeed at its tasks.

The research hypothesis of this work is that the movements of the robot’s cameras are only those that are necessary
to build a sufficiently accurate world model for the robot’s current goals. For example, if the goal is to navigate
through a room, the model needs to contain any obstacles that would be encountered, giving their approximate
positions and sizes. Other information does not need to be rendered into the virtual world, so this approach trades
model accuracy for speed.
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1. Introduction

Robots are needed that can help people perform tasks in settings that are dangerous or repetitive
and dull, in homes, in hospitals and in factories. This requires sophisticated human-robot
interaction in which the robot can comprehend and predict human motions, and plan responses
that are cooperative and avoid harm.

Our system uses a highly accurate physically realistic simulator coupled with stereo vision for
3D modeling and navigation that enables a robot to model and respond to human movements.
The goal is to produce a system that will be fast and will use relatively inexpensive equipment
[Benjamin 2012, 2010, 2008].

The main research objectives of our work are to:

1. Demonstrate the efficient use of stereo vision to recognize objects, people, and motions, and



render them accurately into the simulator,
2. Demonstrate the use of a 3D simulator with realistic physics to navigate.

A primary goal is to demonstrate smooth interaction and cooperation with humans and other
robots in a range of settings. The settings to be used include navigating alongside a walking
person, navigating through walking people, and crossing a busy street while avoiding moving
vehicles.

The usual approach to the use of vision in robotics is to attempt to solve two problems
[Barnes1997]:

(a) Process visual data to extract all the objects and motions in the environment,
(b) Identify the results from (a) that are important and relevant to the current task.

Unfortunately, both of these steps are very expensive computationally. The first step requires
processing an enormous amount of visual data, especially when the environment is very dynamic.
The second step is a difficult data mining problem.

A-priori information includes generic 3D models for walls, buildings, and common outdoor
and indoor objects as well as any specific 3D map and object information for the scene. By
modifying the a-priori data, the system can be quickly adapted to a wide range of scenes and
situations. Our approach to this complexity issue is to leverage goal-directed rendering: the robot
first decides which aspects of its environment are relevant, based on its goals. This information is
used to focus the cameras on specific regions of the environment and extract only the
information needed for the goals. This is important because it has the potential to be faster and
less expensive than current approaches. Our current system runs on a laptop in real time. This is
an original approach that is potentially transformative, because it creates the possibility of a
small, inexpensive 3D modeling system that can be ubiquitous, e.g., it can be on wheelchairs,
and it can be placed in every corridor of a hospital or a factory.

2. 3D Mental Models

Computer vision has had a difficult time reproducing the human ability to understand visual
scene information across a wide range of applications domains and environmental conditions.
There is evidence from cognitive psychology [Oliva & Torralba 2008] that effectively leveraging
context is a key aspect of this human facility. However, while there has a strong bottom-up Marr-
based stream of vision research [Marr 1982], the use of context has also been recognized in
computer vision for a long time: at least from the Univ. of Mass. VISIONS project [Hanson &
Riseman 1978] and more recently to the linguistic-inspired Bag of Words approaches (e.g.,
[Csurka et al. 2004]) global extensions of scale-invariant features (e.g., [Mortensen et al. 2005])
and others [Marques et al 2011]. But in general these approaches still view scene recognition as a
‘recognize the snapshot’ problem, with little input from ongoing, long term objectives and tasks
of the system. The scene understanding problem for a human is one of an embedded system
leveraging sensing to fulfill its goals: sensing is strongly biased in the service of task and how
the agent’s and other agents’ actions are expected to play out in the physical world.

Recent evidence in cognitive psychology [Shanahan 2006] and neuroscience [Pezzulo
2011] supports the proposition that simulation, the “re-enactment of perceptual, motor and
introspective states” is a central cognitive mechanism that helps to provide context for planning.
Shanahan [Shanahan 2006] proposes a large-scale neurologically plausible architecture that
allows for direct action (similar to a behavior-based approach) and also “higher-order” or



“internally looped” actions that correspond to the rehearsal or simulation of action without overt
motion. Barsalou [Barsalou 2009] proposes that distributed structures in the brain’s feature and
association areas learn to recognize categories of experience. He proposes that these simulators
can recreate small subsets of their content in what he refers to as “situated conceptualizations”,
which are embodiments of a simulation in a context: A situated conceptualization of a bicycle in
a context for repair might be very different than in a context for riding, and would include
additional simulators to complete the embodiment. Barsalou argues that by running the situated
conceptualization as a simulation, the perceiver can anticipate future perception.

Cognitive functions such as anticipation and planning operate through a process of internal
simulation of actions and environment [Pezzulo 2011]. Indeed there is a history in the field of
Artificial Intelligence of using “simulated action” as an algorithmic search procedure, e.g., game
trees, though such an approach typically has problematic computational complexity. The Polybot
architecture proposed by Cassimatis et al. [Cassimatis 2004], and based on his Polyscheme
cognitive framework, implements planning and reasoning as sequences of mental simulations
that include perceptive and reactive subcomponents. The simulations include not just the effect
of actions, but also the understood laws of physics (e.g., will a falling object continue to fall) and
are implemented as a collection of specialist modules that deliberate on propositions of relevance
to the robot. Macaluso and Chella [Chella 2007][Macaluso 2007] base their cognitive robot
architecture CiceRobot on the concept of emulators as developed by Gardenfors [Gardonfors
2004]. They use a 3D robot/environment simulator coupled in a feedback loop with the robot
controller. Control commands are sent to both simulation and robot. The simulator generates a
set of 2D images of all expected scenes and these are compared to the actual visual input in order
to determine which most closely represents the actual scene.

Pezzulo [Pezzulo 2011] argues that the evidence in favor of simulation suggests that the
cognitive infrastructure for a robot should incorporate the perceptual and motor capabilities of
the machine as fundamental tools in cognition. As just one example, consider that spatial terms
are often used to give a grounded interpretation to more abstract concept and lead to standardized
ways to view abstract concepts such as magnitude (higher values and lower values). This should
be contrasted with an approach that views a robot’s sensors as a (transparent) tool with which to
fill an object database for plan construction, and a robot’s motors as a (transparent) way to cause
change in the robot’s external environment.

Although Al uses algorithmic search in a space of simulated actions as a problem solving
approach, the typical starting point is a design selection of the state space to represent the
problem and the world. This selection is problem oriented and independent of the motor and
sensory skills of the problem-solving agent. As an example, consider Xiao and Zhang [Xiao
1995] integration of a simulation into a robotic assembly task planning architecture.

In addition to being contraindicated by the evidence from cognitive psychology and
neuroscience, this integration approach adds two additional difficulties: First, there is no general
way to link the data structures of a simulation with the sensory apparatus of the robot. Second,
selection of search space can have a serious impact on finding a solution [Benjamin 1996].

There has been work on extending cognitive models to interact with user interfaces, with the goal
of automatically testing and improving user interface design [Ritter 2007, St. Amant 2005]. Like
our work, this work is based on a model of human visual processing and is incorporated into a
unified cognitive architecture. The cognitive architecture can see the computer screen and



interact with the software similar to the manner of humans. This permits evaluation of the ease of
interaction, and of the time required to accomplish tasks through the interface. This work is
valuable to us as a prototype; however, this work is limited only to user interfaces and is not
designed to be applied to more general environments, such as computer vision in a mobile robot.
In particular, there is no virtual world.

The Soar cognitive architecture has been extended twice with visual mechanisms to give Soar
the ability to control robots [Laird 2009]. The first is Soar/SVI [Lathrop 2009], which gives Soar
the ability to create and reason about spatial representations and abstractions (imagery). The
second is Soar/SVS [Wintermute 2010, Wintermute 2011], which adds the ability to simulate the
effects of actions in the environment. This body of work is the most closely related work to ours.

Soar/SVI and Soar/SVS do provide the ability for Soar to reason about spatial predicates,
which are created in a goal-independent way from the raw visual input and placed in Soar’s
working memory. This permits Soar to use spatial information in its task planning. However, the
visual memory is not a full 3D virtual world, and their research does not examine how goal-
directed inference interacts with perception. Wintermute states: “Theoretically, memories and
processes inside SVS, with influence from symbolic processing in Soar, should segment and
recognize objects and estimate 3D spatial structure based on 2D visual information. As we do not
address the veridical perception problem, the system does not attempt this.” [ Wintermute 2010,
p-42] The perception problem is precisely what we are addressing in our research, and we are
investigating issues such as how knowledge about a situation affects the accuracy of stereo
disparity and object tracking. In this respect, our work is complementary to Soar/SVI/SVS.

There is also much work on scene classification [Borji 2014] but this is not really similar to
our work. That work classifies individual images according to content, e.g. “living room scenes”
versus “swimming pool scenes”. But we are not interested in just assigning a class label to an
image; we want to comprehend the behaviors in a sequence of images (video) so that we can
understand what might happen next.

There is considerable work in the psychological literature on focus of attention in humans
[Riche 2013] and we have found it a source of inspiration. It presents a range of models of
saliency based on large amounts of data. However, that work does not attempt to connect their
models to task representation and problem solving, as we are doing.

3. System Architecture

3.1 Motivation

Our vision system architecture is directly inspired by the cognitive and neurobiological
structure of the human vision system, and the goal of our work is to develop an appropriate set of
abstractions for a computational implementation of the human vision system and measure their
effectiveness.

The human vision system does not apply equal computational resources everywhere in its
visual field, but instead focuses on and analyzes just a small portion of the visual field at each
moment; this is called a fixation [Rayner 1995]. After extracting the needed information from
that region of the visual field, the vision system rapidly moves the eyes to a new region of the
visual field for the next fixation. These rapid movements are saccades, which are quick
movements across the visual field, and vergences, which change the depth of focus [Rayner
1995]. The effect of this organizational structure is to permit efficient use of limited



computational resources. Instead of fully processing all of the sensory input and then discarding
everything that is not relevant to the goals, this organization applies computational resources
only to the parts of the sensory input that are likely to be relevant to the agent’s goals. The key is
to organize the search of the visual field in a manner that effectively gathers useful information.

Much work has been done on measuring the functioning of the human vision system and of its
system of saccades and vergences [Rayner 1995], but there has not been a computational
implementation that connects the actions of the vision system to the goals of the agent.

Our research hypothesis is that the movements of the vision system are those that are
necessary to build a sufficiently accurate 3D world model for the robot’s current goals. For
example, if the goal is to navigate through a room, the world model needs to contain any
obstacles that would be encountered, giving their approximate positions and sizes. The vision
system needs to search for this information; other information does not need to be rendered into
the virtual world.

In this way, our system prunes the information at the perception stage, using its knowledge
about the agent’s goals and about objects in the world and their dynamics to decide where to
look and what type of information it is looking for. This is in contrast to the usual approach of
gathering lots of sensory information, processing it all and rendering it into a world model in a
goal-independent manner, then deciding which information is necessary for decision making.
This latter approach wastes a great deal of processing time processing information that is
discarded in the decision making process. We are designing a fast, inexpensive vision system by
emulating the organization of the human vision system.

3.2 Implementation Overview

Typical robot vision systems connect their cameras directly to their world models, so that
sensory data is processed and modeled in a fixed way directly in the world model. Reasoning is
then performed on the world model to extract meaning about the scene. This type of architecture
treats perception as a separate process from reasoning, and typically the implementation reflects
this, e.g. a computer vision module processes the vision data and puts symbolic representations
of the recognized objects and their relationships in the world model, and the reasoning engine
manipulates these symbols to plan and learn. The reasoning engine does not alter the
representation of the visual data.

In contrast, our virtual world is not connected directly to visual input. Sensory data is placed
directly in the working memory of the reasoning engine (the Soar cognitive architecture) after
some low-level processing; the reasoning engine’s principal task is to reason about how to model
and interpret the data. It does this by repeating the following five steps:

It senses in the virtual world, using the same position and orientation as in the real world,
and using the same sensors. It grabs graphics input from PhysX, and if it is also modeling
range data, it grabs distance data from PhysX in the directions of the actual range sensors.

It compares the virtual sensory data with real sensory data using the MMD (Match-
Mediated Difference) [Lyons 2009][Lyons 2009b], which uses a least-squares measure to
find the degree of disagreement. It aligns the real and virtual images with an affine map,
then finds a set of matched key points and places a normalized Gaussian at each of them
to detect differences. The regions of greatest difference are placed in working memory.



A region of difference is selected by the reasoning engine according to the robot’s goals
and the degree of disagreement. The vision system saccades to that region and fixates.

Stereo disparity, color segmentation, and optical flow are computed only in the small
region of focus. Restricting the computation to this small region permits the use of highly
accurate but computationally expensive algorithms for these computations, e.g. disparity
of disparities.

The reasoning engine analyzes the information from the fixations and determines the
needed adjustment to the virtual world to reduce the disagreement. If an object has
disappeared from the real world, it is removed from PhysX. If a new object has appeared,
the information from the fixation is input to the object recognition database, and a mesh
model of the best match is rendered into the virtual world. If an object’s motion has
changed, its process model is updated.

In this way, perception becomes a problem-solving process; the system’s goal is to build a 3D
representation that is useful for the given task, and this goal determines the focus of attention.
This enables all the knowledge of the system to be brought to bear on perception. The result is a
working physical model of the observed scene. PhysX can run this virtual world faster than real
time to predict the consequences of various actions and evaluate them. In this way, it implements
simulation-based perception and control.

Figure 1 shows the block diagram of the overall system concentrating on the lower level
perceptual and simulation system. The core functionality of the system is in the four shaded
boxes. The camera module generates an image of the environment as seen by the robot at pose Pr.
The simulation module generates a synthetic view of the environment as predicted by the
simulation with the robot at pose Ps. Both images are fed to the match-mediated difference
module, which calculates the affine transform from one to the other producing an ‘error’ measure
He and a match-mediated difference (MMD) image. The error information is used to modify the
pose of the simulation and improve the localization of the robot with respect to the simulation.
The difference mask is used to determine what scene elements are not where they were expected
(new objects, missing objects or misplaced objects).
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Figure 1: System Block Diagram

Synchronization

The four shaded boxes comprise the autonomous core of the system and function in two modes:

1. Synchronization Mode: In synchronization mode, the system continually compares one
image from the camera module with one image from the simulation module generating an
error homography He and an MMD image. The error homography is used to calculate a new
simulation pose Ps. The difference image is used to identify new, unexpectedly placed or
missing scene elements. This information is used to add or remove simulation elements to
improve the visual correspondence of the simulation with the environment. For example, an
unexpected object will appear as a difference region. In response, an object will be
introduced into the simulation at this position. The texture information from the difference
region is then used to texture the surface of the object. The simulation is constrained to step
through time at the same rate as the robot (“real-time”).

2. Prediction Mode: In prediction mode, the state of the simulation is first stored, then the
simulation is allowed to step through time at a faster rate than the robot (super “real-time”)
for a specific duration. The synchronization with the camera module is disabled for the
duration. At the end of the duration, the camera image is compared with the information
from the camera module to extract predicted scene element locations. The current state of
the simulation is then restored.

The interface between the behavior-based and Soar levels of the system is implemented using
the concept of a Perceptual Schema [Arbib 2003], acting as a visual marker [Wasson,
Kortenkamp & Huber 1999] or anchor [Coradeschi & Saffioti 2001] that ties a scene element or
elements to perceptual concepts that play a role in behaviors. Perceptual schema markers can be
placed on real-scene elements and then track these elements, reporting information to the
behaviors in which they play a role. They can also be placed on corresponding simulated scene
elements, allowing for the easy extraction of predicted object behaviors when operating in
prediction mode. A perceptual schema could include active motion of the sensors, and even
motion of the robot itself: a visual routine in the sense of Ullman [Ullman 1984].



For additional detail as well as experimental results about the MMD module and
Synchronization module, see [Lyons 2009, 2010, 2011, 2012].

3.3 Current Status of the Vision System

The system currently can model static environments and environments with simple dynamics,
such as a bouncing ball. These are modeled in real time with the entire system running on a
laptop, and with sufficient accuracy that a Pioneer robot can navigate through the world. The
simplicity of the static world results in a very simple visual search strategy: the vision system
saccades to the largest difference that is in front of the robot.

The MMD is robust to variations in lighting and color and level of detail between the real and
virtual worlds. The types of objects that can be recognized and rendered are limited to a few
simple chairs and tables, balls, and the Pioneer robot; these are hand-coded in a small library.

A number of videos showing the operation of the system are available [PaceVids].

4. Current Work

We are focusing on two main topics at this point:

1 - The speed must be substantially increased. As the environments become more dynamic
and contain more objects, the computational cost of 3D modeling becomes prohibitive.

2 - Currently the system uses a small hand-coded library of objects that it can recognize. This
must be replaced with the ability to use one of the large online libraries of 3D models.

4.1 Increasing the Speed

The speed of the system is a fundamental consideration. Many approaches to 3D modeling work
well in theory and on small examples, but are too expensive computationally on real problems.
In our current system, we have encountered two main bottlenecks: the MMD and the number of
degrees of freedom resulting from too many moving objects.

We are addressing the first bottleneck by implementing the MMD on the laptop’s GPU. The
current implementation is CPU-based, and can yield at most four difference calculations per
second. The MMD calculations are based on the computation of local Gaussians, and we are
confident that the MMD calculations can be parallelized to a large extent. Even an ordinary
laptop usually has a GPU with hundreds of cores, and we expect a GPU-based implementation to
eliminate this bottleneck. Our goal is for the MMD calculations to be a negligible fraction of the
total computational time; the MMD must be run at least ten times per second, so we are aiming
for an MMD that runs in under 10 milliseconds. We are using CUDA, which is Nvidia supported
and interfaces easily with PhysX, which is also from Nvidia.

The second bottleneck arises from the fact that the system currently must visualize every
situation, even if it is very similar to ones it has seen before. For example, suppose a robot
bounces a ball off a wall and it bounces back to the robot. Every time this is done the robot must
visualize the path of the ball and predict that it will bounce back. This is unnecessary.
Furthermore, in more complex environments it can be the case that parts of the environment
behave in ways the robot has seen before; re-visualizing these behaviors can waste time that is
needed to analyze other parts of the environment. It is desirable for the robot to learn from
experience, so that it can know the results of an action without having to visualize and deliberate
every time. This is the approach we will take to handling the growth of complexity as the



environments become more dynamic.

This is one primary motivation for using Soar as the reasoning engine. Soar possesses an
episodic memory [Gorski & Laird 2011], which contains a complete history of the experience of
the agent. These episodes can be triggered for storage and later retrieved by cues that exist in
working memory. Each cue is a subset of working memory that can match one or more episodes
and cause them to be retrieved from long-term memory. Once an episode is retrieved, the agent
can access temporally related episodes that occurred before and after it. This permits the agent to
bypass 3D model construction and visualization, and quickly “step through” the results of the
previously seen sequence of episodes. In this way, the system can shift over time from
deliberation to reaction.

Effective implementation of an episodic memory for 3D behaviors requires identifying a set of
important working memory structures that correspond to features of meaningful episodes, so that
Soar will know which episodes to store, and will retrieve them at appropriate times. These
features could include sudden changes in direction, velocity or acceleration of objects in the
environment (especially those resulting from collisions), as well as the appearance and
disappearance of objects. In addition, these features are likely to include relevant goals, such as
wanting to determine the future position of an object or wanting to choose a direction to move.
This part of our work consists of measuring the effect of a variety of such features on the
reduction of time needed to classify observed behaviors and on the accuracy of the classification,
and designing an effective cue system. If the cues are too general, then too many episodes will be
retrieved, and too often, resulting in a slowup of the system. If the cues are too specific, then too
few episodes will be retrieved to produce much speedup. One promising idea is learning which
cues to use for retrieval [Gorski & Laird 2011].

4.2 Object Recognition

The current object recognition library is small, containing fewer than a dozen objects. Each
object is represented by a set of images from eight angles, together with a mesh model. Objects
are recognized using a Haar classifier, and the corresponding mesh is rendered into the virtual
world with the appropriate pose. This was sufficient for our initial work, but we need to enable
our vision system to recognize a large variety of objects without a lot of hand coding on our part.

We will implement a new method based on the approach of Lai and Fox [Lai & Fox 2010].
Their object detection system is based on matching 3D point clouds against Google’s 3D
Warehouse. Their algorithm minimizes simultaneously the classification distances of both the
virtual representations of objects and their real representations. This permits their algorithm to
use a large labeled database of virtual 3D objects for identification in the real world, and the
database is public, open source, and continually growing.

Their code is slow (80 seconds to classify an entire outdoor scene) but their approach is
“highly parallelizable” via GPU implementation [Lai & Fox 2010]. In addition, our task is made
much easier as we are using video rather than separate individual scenes as they do; we do not
need to start from scratch for each scene. We already know the ground and most of the scene and
can focus on the small region where a difference has been detected to identify the object in that
region of interest; this computation does not even need to be done when there are no new objects.
This alone should speed the computation by a large amount.

Once an object is recognized, an associated mesh will be retrieved, if it exists, and rendered
into the virtual world. If there is no previous mesh for this object, the point cloud will be



smoothed and filled in and turned into polygonal form as described in [Rusu 2008] then rendered
as PhysX mesh and added to the library of mesh objects.

5. Summary

A wide range of computer vision techniques have been developed over the past several years to
recognize objects and people, to classify their motions, and for robot localization and mapping,
with the goal of creating robots that can interact quickly and safely with people. This is a goal
with tremendous societal impact, as it leads to a wide variety of applications that can affect
peoples’ lives in many ways, including their jobs, their healthcare, their transportation, and their
security. These computer vision techniques work well in simple environments containing few
moving objects, but their performance degrades rapidly as the environments become more
realistic and dynamic. A new approach is needed to find methods that can scale with the
complexity of the real world.

Our approach is based on research in cognitive psychology that indicates that the use of 3D
models in spatial reasoning is fundamental, occurring even in people who have been blind since
birth [Ungar 2000]. Our design for a vision system emulates the human vision system, and
explores the connections between the measurable searching motions of the human vision system
- saccades and fixations - and the goal of maintaining an accurate 3D model of the environment.
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