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Abstract. Robots interacting and collaborating with people need to comprehend 
and predict their movements. We present an approach to perceiving and model-
ing behaviors using a 3D virtual world. The robot's visual data is registered with 
the virtual world to construct a model of the dynamics of the behavior and to 
predict future motions using a physics engine. This enables the robot to visual-
ize alternative evolutions of the dynamics and to classify them. The goal of this 
work is to use this ability to interact more naturally with humans and to avoid 
potentially disastrous mistakes. 
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1 Introduction 

The ADAPT project (Adaptive Dynamics and Active Perception for Thought) is a 
collaboration of three university research groups at Pace University, Brigham Young 
University, and Fordham University to produce a robot cognitive architecture that 
integrates the structures designed by linguists and cognitive scientists with those de-
veloped by robotics researchers for real-time perception and control. ADAPT is under 
development on Pioneer robots in the Pace University Robotics Lab and the Fordham 
University Robotics Lab. Publications describing ADAPT are [1,2,3,4]. 

2 The ADAPT Architecture 

Our approach is fundamentally different from other projects, which typically attempt 
to build a comprehensive system by connecting modules for each different capability: 
learning, vision, natural language, etc. Instead, we are building a complete cognitive 
robotic architecture by merging RS [6,8,9], which provides a model for building and 
reasoning about sensory-motor schemas, with Soar [5], a cognitive architecture that is 
under development at a number of universities. RS possesses a sophisticated formal 
language for reasoning about networks of port automata and has been successfully 

                                                             
 



applied to robot planning. Soar is a unified cognitive architecture [7] that has been 
successfully applied to a wide range of tasks. 

Soar’s model of problem solving utilizes a single mechanism of subgoaling and 
chunking to explain human problem solving performance; utilizing Soar as the basis 
of ADAPT permits us to unify the mechanisms underlying perception, language and 
planning. Furthermore, it permits us to explore possible interrelationships between 
learning in these areas, e.g. how learning language and learning perception may be 
related. Finally, it permits us to test our architecture on robotic versions of well-
known cognitive tasks and explore how robot learning might be related to human 
learning. 

RS provides a powerful representational language for the system's dynamics, lan-
guage and percepts; however, RS does not provide a mechanism for synthesizing the 
dynamics. Furthermore, RS lacks demonstrated cognitive plausibility, and in particu-
lar lacks a learning method. 

We have implemented RS in Soar to take advantage of Soar's cognitively plausible 
problem-solving and learning mechanisms. Soar uses universal subgoaling to organize 
its problem solving process into a hierarchy of subgoals, and uses chunking to speed 
and generalize that process.  Universal subgoaling permits Soar to bring all its 
knowledge to bear on each subgoal. Chunking stores generalized preconditions for 
search control decisions, so that in future tasks similar search control decisions are 
made in a single step. 

3 Visualization and Prediction of Human Behaviors 

We believe that the comprehension of human movements and intentions requires the 
ability to visualize human movements and predict possible future movements. We 
view visualization as consisting of both a perceptual component and a reasoning com-
ponent. The perceptual component is performed using the same perceptual mecha-
nism that the robot uses to perceive its environment; the difference is that visualiza-
tion perceives a simulation of the environment. Visual reasoning manipulates and 
superimposes representations that consist of a combination of symbolic knowledge 
and 3D animations. This approach to comprehension requires the robot to be able to 
create different situations in which it can generate behaviors of robots, people and 
physical systems, and perceive the results of these behaviors. This requires imple-
menting a virtual world that the robot can control.  

ADAPT’s virtual world is a multimedia simulation platform capable of realistic 
simulations of physical phenomena. It combines the various forms of map information 
found in most robots: topological, metric and conceptual information. ADAPT com-
pletely controls this virtual world, and can create arbitrary objects and behaviors in it, 
including nonexistent objects and behaviors that were not actually observed. Central 
to ADAPT’s use of its virtual world is its ability to view these constructions from any 
point. This enables ADAPT to create visual representations with desired properties. 

In the current implementation, ADAPT's world model is PhysX. PhysX gives the 
robot the ability to create a detailed and dynamic virtual model of its environment, by 
providing sophisticated graphics and rendering capabilities together with a physics 
engine based on the PhysX physics engine. PhysX models a wide variety of dynamic 



environments, including modeling other agents moving and acting in those environ-
ments. 

This world model is used to represent the important entities and behaviors in the 
environment. The built-in physics capability of PhysX is then used to predict what is 
going to happen in the immediate future. Let’s examine how ADAPT uses the virtual 
world together with its vision system to model and predict the environment. ADAPT's 
vision system consists of two main components, a bottom-up component that is al-
ways on, and a top-down goal-directed component controlled by Soar.  

The bottom-up component is simple and fast. It does this by not producing much 
detail. The idea is for it to produce a basic stereo disparity map, a coarse-grained im-
age flow, and color segmentation in real time. It runs on the robot's onboard computer 
using Intel’s open vision library, and segments the visual data from the robot's two 
frame-grabbers. These "blobs" are transmitted together with stereo disparity data and 
optical flow to the off-board PC that is running Soar, where it is placed into working 
memory. This component is always on, and its output is task-independent.  

The top-down component executes the more expensive image processing func-
tions, such as object recognition, sophisticated image flow analysis, and application of 
particular filters to the data. These functions are called in a task-dependent and goal-
dependent manner by Soar operators. This greatly reduces their frequency of applica-
tion and speeds the operation of the vision system significantly. These two compo-
nents are not connected to each other; instead, the output of the bottom-up component 
is used by Soar to determine when to call the top-down operations. Soar compares the 
bottom-up output to the visual data predicted by the virtual world. 

The virtual world can display the view that the virtual copy of the robot "sees" in 
the virtual environment. The output of this graphics "camera" in PhysX is segmented 
and sent to the MMD (Match-Mediated Difference), together with distance infor-
mation and motion information. The MMD tests for significant differences between 
the expected view and the actual view, e.g. the appearance of a large new blob or a 
large change in optical flow. It aligns the real and virtual images with an affine map, 
then finds a set of matched key points and place a normalized Gaussian at each of 
them. The normalized match quality is the inverse of the distance between matched 
points divided by the sum of all match errors. We use this as a coefficient of the 
Gaussians to create the MMD measure.  Any significant difference is placed in Soar's 
working memory, where it can cause an operator to be proposed to attend to this dif-
ference.  

Soar controls all major aspects of perceptual processing, with the goal of construct-
ing a virtual model of the environment that can be used in task planning. These as-
pects include focusing on regions of interest, choosing the depth of field, and deciding 
on the degree of detail for each part of the virtual model. For example, if a new blob 
appears, an abstract operator will be proposed to focus on this blob and try to recog-
nize it. If this operator is selected (if there is no more important operator to do at the 
moment) then RS/Soar will instruct the robot to turn its cameras towards this blob, 
focus at the appropriate depth, and obtain a point cloud from the visual input. Key-
points are extracted from the point cloud and used both in object recognition and to 
create a mesh that is registered with surrounding meshes. 

Figure 1 shows two point clouds of a kitchen counter by this vision system. These 
are transformed into meshes. By joining small meshes together, the system can create 



larger meshes when necessary. Portions of the world that are not relevant to task goals 
are not rendered, greatly increasing efficiency. 

 
 

         

 

 

Fig. 1. The two point clouds at top are registered and joined to create the 
bottom cloud, which is transformed into a PhysX mesh. 

 
This approach also works for people, as shown in Figure 2. People are skeletonized 

in a manner similar to that used by the Kinect, and the skeleton is covered with mesh. 
Our initial work was with the Kinect, but now uses only stereo vision. 



       

     

Fig. 2. Point clouds for a face, registered and joined to create a 3D mesh for 
a skeleton. The two point clouds at top are joined to create the cloud seen 

below, frontal view at left and from above at right. 

Once an object is recognized or rendered, a virtual copy is created in PhysX. The 
object does not need to be recognized again; as long as the blobs from the object ap-
proximately match the expected blobs from PhysX, ADAPT assumes it is the same 
object. Recognition becomes an explicitly goal-directed process that is much cheaper 
than continually recognizing everything in the environment. The frequency with 
which these expensive operations are called is reduced, and they are called on small 
regions in the visual field rather than on the whole visual field. 

Thus, ADAPT’s vision system spends most of its time verifying hypotheses about 
its environment, instead of creating them. The percentage of its time that it must 
spend attending to environmental changes depends on the dynamic nature of the envi-
ronment; in a relatively static environment (or one that the robot knows well from 
experience) there are very few unexpected visual events to be processed, so visual 
processing operators occupy very little of the robot’s time. 

Figure 3 shows the overall flow of control of our vision system [11,12]. The real 
and synthetic images of the scene as viewed by the robot are compared. If the scenes 



are considered the same but from different viewpoints, then the viewpoint of the cam-
era in the simulation is changed, and the simulation generates an image taken by the 
camera at the new location. If an unexpected object is seen in the real image, an object 
is introduced at the corresponding position in the simulated scene. The region of the 
real image responsible for the difference is used as video texture on the object and a 
new synthetic image generated.  The information on whether there is no difference, an 
unexpected object, or an object missing between the image pairs is made available to 
action planning.   

 
Figure 3. The input from the physical world (left above) is parsed, classified and ren-
dered into the virtual world (below right). The MMD compares both inputs, detects dif-
ferences and updates the virtual world. 

 
This loop of difference detection and simulation modification is used to keep the 

simulation synchronized to the observed environment. For prediction purposes, the 
simulation can be allowed to ‘fast forward’ in time, so that the expected position, for 
example, of a target can be calculated and then compared to observations.  

4 Summary 

We have sketched the overall design of a new approach to the comprehension of be-
havior that is part of a robotic cognitive architecture. A powerful 3D multimedia 
world model is used to render the behaviors in the environment. This gives the robot 
the ability to visualize alternative evolutions of the dynamics and to classify them. 
The implementation of the basic components is complete.  



Further information on this work, including video clips showing the robot moving 
under the control of schemas and the use of the world model, can be downloaded from 
the website for the Pace University Robotics Lab: http://csis.pace.edu/robotlab 
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