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Abstract. Robots are needed that can help people perform tasks in settings that 
are dangerous or repetitive and dull, in homes, in hospitals and in factories. This 
requires sophisticated human-robot interaction in which the robot can compre-
hend and predict human motions and plan responses that are cooperative and 
avoid harm. Our system uses a highly accurate physically realistic simulator cou-
pled with stereo vision for 3D modeling and navigation that enables a robot to 
model and respond to human movements. The simulator is based on a 3D virtual 
world that is a virtual copy of the robot’s environment. A central issue is that this 
virtual world must be updated in real-time for it to be useful. This paper describes 
a fast algorithm for detecting differences between the real world and the simu-
lated world so that the robot can update the simulated world. 
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1 Introduction 

Computer vision has had a difficult time reproducing the human ability to understand 
visual scene information across a wide range of applications domains and environmen-
tal conditions. Recent evidence in cognitive psychology [27] and neuroscience [25] 
supports the proposition that simulation, the “re-enactment of perceptual, motor and 
introspective states” is a central cognitive mechanism that helps to provide context for 
planning. Shanahan [27] proposes a large-scale neurologically plausible architecture 
that allows for direct action (similar to a behavior-based approach) and also “higher-
order” or “internally looped” actions that correspond to the rehearsal or simulation of 
action without overt motion. Barsalou [26] proposes that distributed structures in the 
brain’s feature and association areas learn to recognize categories of experience. He 
proposes that these simulators can recreate small subsets of their content in what he 
refers to as “situated conceptualizations”, which are embodiments of a simulation in a 
context: A situated conceptualization of a bicycle in a context for repair might be very 
different than in a context for riding and would include additional simulators to com-
plete the embodiment. Barsalou argues that by running the situated conceptualization 
as a simulation, the perceiver can anticipate future perception. 
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We are developing ADAPT (Adaptive Dynamics and Active Perception for 
Thought), which is a robot cognitive architecture that integrates the structures designed 
by cognitive scientists with those developed by robotics researchers for real-time per-
ception and control. Our long-range goal is to create a new kind of robot architecture 
capable of robust behavior in unstructured environments, exhibiting problem solving 
and planning skills, learning from experience, novel methods of perception, compre-
hension of natural language and speech generation. 

A central structure of this architecture is its mental model of its environment, which 
consists of a 3D virtual world containing the relevant objects around the robot. This 
model is used to classify and predict the behaviors in the environment. For this model 
to be useful, it must be continually updated to maintain its accuracy with the environ-
ment. As new objects appear, they must be added. As objects disappear, they must be 
removed. As they change motion, their movement in the virtual world must be updated. 
This is a difficult task to achieve in real time. 

The virtual and real worlds must be compared very quickly to detect and modify any 
differences. The component that handles this comparison is the MMD (match- medi-
ated difference), which compares the input from a real camera to the input from a virtual 
camera at the same location in the virtual world. This paper describes a fast implemen-
tation of the MMD. 

The MMD aligns the real and virtual images with an affine map, then finds a set of 
matched key points and places a normalized Gaussian at each of them. The normalized 
match quality is the inverse of the distance between matched points divided by the sum 
of all match errors. We use this as a coefficient of the Gaussians to create the MMD 
output, which is a list of the differences between the real and virtual worlds, ordered by 
size. Further details of the MMD algorithm are in [4]. Performing this calculation takes 
a half second or more. To make this approach efficient, we have developed a parallel 
implementation of the MMD that utilizes the GPU using CUDA. 

In the next section, we describe how the MMD code was structured and modified to 
speed up its operation on each image. In the subsequent section, we show how to apply 
the MMD in parallel to the frames of video and present the resulting speedup. 

 

2 Accelerating single images using MMD on the GPU 

The initial MMD code from [4] runs on the CPU and takes slightly more than half a 
second to run. This is inadequate to handle the video stream from a typical robot camera 
in real time. The first step in improving the speed is to reorganize the code to run on 
the GPU. 

There are three main parts of the MMD code. The first part is compareCam2Sim 
which finds the SIFT feature descriptor for the image. A SIFT feature [7] is a selected 
image region (also called a keypoint) with an associated descriptor. Keypoints are ex-
tracted by the SIFT detector and their descriptors are computed by the SIFT descriptor. 
It is also common to use independently the SIFT detector (i.e. computing the keypoints 



3 

without descriptors) or the SIFT descriptor (i.e. computing descriptors of custom key-
points). 

 

 
 

Fig. 1. An image (left) and its SIFT features (right). The sift features show the directions (arrow), 
size (length of arrow) and locations. 

 

 
 

Fig. 2. Matching of SIFT features in the simulated image (left half of figure) and real 
image (right half). A box has been added to the simulated world. 

 
Part two is the function AllignImageAffineM which aligns images to the same angle. 
Part three is the function cv2simDifference which computes the difference between two 
images.  

The output of cv2simDifference is then cleaned up by removing noise introduced by 
the affinity transformation, normalizing the intensities by subtracting the mean, and 
filtering out very small differences between the images. 

The three main parts of the code were timed on a workstation with 24 cores and 
96GB memory. The results were: 
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compareCam2Sim           6.99 ms 
 
AllignImageAffineM     60.57 ms 
 
cv2simDifference          131.28 ms 
 

As a result, cv2simDifference was chosen to be implemented on the GPU. Its code is: 
 

 
 

Fig. 3. cv2simDifference code 
 
The code has four nested loops that are suitable for parallelization on the GPU. The 
GPU code consists of four parts (timing in parentheses): 
 

malloc allocates space on the GPU to receive the data from the CPU (55.90 ms); 
 
memcpy copies the data from the CPU to the GPU (0.64 ms); 
 
executing cv2simDifference using 1 block, 240 threads (148.77 ms); 
 
returning the results to the CPU (16.22 ms).  

 
This initial test consumes too much time in the kernel, so the GPU code was modi-

fied to use 240 blocks and 320 threads in each block. This led to a considerable im-
provement: 

 
malloc allocates space on the GPU to receive the data from the CPU (56.73 ms); 
 
memcpy copies the data from the CPU to the GPU (0.48 ms); 
 
executing cv2simDifference using 240 blocks, 320 threads/block (12.26 ms); 
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returning the results to the CPU (16.22 ms).  

 
The total time used for the first three parts of the MMD code is 85.69ms, which is 

a large improvement over the CPU code, but still too slow. 

3 Using the MMD to Process Video on the GPU 

The analysis in the previous section is based on processing one frame at a time. We 
now extend the MMD to handle a video stream. 

The image and video processing is similar, because video is made of frames and each 
frame can be treated as single image. However, as video is a sequence of frames, we 
can store the video in a vector and use multithreading to accelerate the time of pro-
cessing. The definition of vector is: 

 
template < class T, class Alloc = allocator<T> > class vector; 

where the descriptions of parameters are 

• T − Type of the element contained. 

T may be substituted by any other data type including user-defined type. 

• Alloc − Type of allocator object. 

By default, the allocator class template is used, which defines the simplest 
memory allocation model and is value-independent. 

We define the parameter T as follows: 
 
class CV2SimSmallFrame{ 
public: 
 CV2SimSmallFrame(){} 
 void makeImage2twoDImage(const Mat& bw, int index){ 
  vector<uchar*>& item = twoDImage[index]; 
  item.resize(bw.rows); 
  for (int i = 0; i < bw.rows; ++i) 
   item[i] = (uchar*)bw.ptr<uchar>(i); 
 } 
 void process(const Mat& image, int added = 0){ 
  ….. 
  GaussianBlur(bw_img, bw_img, cv::Size(5, 5), 0, 0,               
                         cv::BORDER_REPLICATE); 
  ……. 
  compareCam2Sim(&twoDImage[0][0], &twoDImage[1][0],  
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                        &twoDImage[2][0], &twoDImage[3][0],bw_img.cols,  
                        bw_img.rows, &corner_list[0], &corner_list[1], &corner_list[2]); } 

 CORNER_LIST* getCornerList(int index){ 
  ……. 
 } 
private: 
 ….. 
}; 
 

The Process method calls the GaussianBlur and compareCam2Sim functions which 
compare the corner features. This method is different from the method of processing a 
single image, as it processes every video frame in parallel using OpenMP. 

OpenMP is a library that supports shared memory multiprocessing. The OpenMP 
programming model is SMP (symmetric multi-processors, or shared-memory proces-
sors): that means when programming with OpenMP all threads share memory and data. 

OpenMP uses the fork-join model of parallel execution, in which programs begin as 
a single process (the master thread). The master thread executes sequentially until the 
first parallel region construct is encountered, and then creates a team of parallel threads 
that simultaneously execute statements in the parallel region. 

The statements in the program that are enclosed by the parallel region construct are 
then executed in parallel among the various team threads. Our OpenMP code is: 

 
#pragma omp parallel for num_threads(local_list.size()) 
   for (int i = 0; i < local_list.size(); ++i){ 
    CV2SimSmallFrame& fA = cacheSSF[i * 2]; 
    CV2SimSmallFrame& fB = cacheSSF[i * 2 + 1]; 
    TimeStampFrame tsf = local_list[i]; 
 
    fA.process(tsf.frameA, -50); 
    //timer.step("process frameA %.2f ms\n"); 
    fB.process(tsf.frameB); 
    ……. 
   } 
  ………  
  } 
 

OpenMP coding has two models, the static model and the dynamic model. Here we use 
the static model. 

This final code, using OpenMP to run the MMD using 240 blocks and 320 threads 
per block, averages 25 ms processing time per frame. This is more than twenty times 
faster than the CPU version of the code and is sufficient to process the camera video in 
real time. 
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Fig. 4. The MMD output for the two images in Figure 2. The box at left indicates the region of 
difference, with a center at 146, 192. The MMD output mask at right shows the shape of the 
difference. 
 

Conclusion 
 

The Match-Mediated Difference (MMD) algorithm is useful in comparing video 
streams; however it is not capable of performing this in real time. In this paper we show 
how to achieve real-time performance by parallelizing the MMD using the GPU and 
OpenMP. The parallelized MMD code described in this paper is available at: 

 
https://github.com/PaceRobotLab/ParallelMMD 
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