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Abstract: This study explores implementing and using machine learning in an easy, scalable, and sustainable way to solve common 

everyday problems.  There are multiple challenges with new technology adoption and constraints around accessing and using data, 

running computational workload, especially when using multiple cloud vendors and proprietary technologies.  The paper proposes 

adopting the microservices architecture style to implement and practice machine learning, applicable for a broad set of machine learning 

frameworks and algorithms. 
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I. INTRODUCTION  

Machine Learning (ML) is an application of artificial intelligence (AI) that automatically learns from data and is able to make 

guesses and predictions that are statistically verifiable as accuracy and subsequently prove good enough to be applicable and useful.  

ML represents data analytics practices and patterns that teach computers to do what humans and animal perform naturally, such as 

learn from prior experience, use evidence to inference and abstract. ML models are established by learning directly from the data 

and in some cases taking input from humans of other machines (ex: supervised learning).  Machine Learning uses algorithms to 

learn from data, perform statistical processing using the data and performs subsequent predictions. Modern implementations of 

ML develop and harvest ML Models and produce programs that can be implemented and executed as jobs. Jobs will consume data 

and are implemented on various platforms, such as in-house (“on-premise”) computers and/or on public cloud platforms. 

The proposed ML Framework and Patterns are covering key practical elements of applied ML, with focus on simplification, 

streamlining and making it accessible for everyday practitioner to implement them end-to-end (E2E) and produce practical results.  

Pattern Recognition (PR) is the process of recognizing patterns by using Machine Learning Algorithms. PR helps detect 

characteristics of data, including features, classes, clusters and other properties that yield information about a given system, service 

or studied entity.  Microservices represent engineering patterns to developing applications as a suite of small, independently 

deployable services built in alignment with key business functions of a solution. Microservices enable simplification and 

streamlining, while open-source and cloud-native technologies will provide accessibility and ability to implement on-premise 

and/or public-cloud agnostic. The proposed ML framework includes practices for developing, training and deploying deep learning 

models as we microservices. 

II. CHALLENGES WITH PRACTICAL MACHINE LEARNING 

The multitude of today’s machine learning frameworks, together with the broad spectrum of computing platforms and associated 

technologies for virtualization, computation acceleration and real-time streaming make ML projects implementation very complex 

and hard to accomplish at scale and as a service.  This is made worst by presence of multiple public cloud services providers that 

use different and many times proprietary technologies that can easily lock in customers and make them cloud and platform 

dependent. For example, when using Amazon Web Services (AWS) the offered ML solution is based on SageMaker Framework, 

while within Azure the preferred technology is based on MXNet Framework.  Often proprietary technology will lock-in developers 

and data scientists to sub-optimal and expensive solutions, thus negatively impacting their research and ML implementation efforts.   

 

The challenges this paper addresses are defining simple enough framework with patterns and practices that can be applied for a 

broad set of problems, leverage multiple open source machine learning technologies, be easy to implement and use anywhere, 

including developer workstations, on-premise computers and public cloud environment. To achieve this, the patterns and practices 

must be computation, operating system and cloud-platform agnostic 

III. SOLUTION STRATEGY 

The solution strategy entails researching and developing (R&D) a framework and underpinning patterns that leverage the following 

elements: 

 REST-based microservices architectures and development patterns 

 Light-weight virtualization components, that implement simplified Software Stack for various ML frameworks, such as Nvidia 

CUDA Stack for TensorFlow. 

 Cloud agnostic big data components that enable seamless parallel and distributed functionality and scalability 

 Open Source technologies including Big Data, Virtualization and ML Frameworks 

 Cloud Native tools and technologies that enable cloud provider agnostic solutions 
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 Opensource workflow type solutions that implement multiple practices end-to-end across ML projects and solutions. Such 

workflows enable the training, improvement, test, validation and use of ML Models and associated ML Features. 

IV. TECHNOLOGY LANDSCAPE 

Let’s review the key cloud computing concepts definitions.   

Virtualization is one of the key technologies for cloud computing, and virtualization in the cloud covers multiple areas:  

 Compute: includes virtual machines and other components that use CPUs or GPUs 

 Compute acceleration with GPUs; some cloud providers enable GPU virtualization as well. 

 Networking, that is required components to communicate.  Networking has multiple virtualization implementations, such as 

VLANs, Overlay Networks, VPCs (virtual private clouds) or VDCs (virtual data centers). 

 Virtualized storage attached to virtual machines / compute and unattached storage exposed as API etc. 

 Data virtualization and metadata management 

Cloud Computing is type of shared multi-tenant computing which usually provides remote pool of computing resources and 

compute services via the internet.  The representative cloud compute services are the following: 

 Infrastructure as a Service (IaaS), which provides virtualized compute (virtual machines with dedicated operating system), 

virtualized storage and virtualized network (virtual LANs; VLANs). 

 Container as a service (CaaS) also provides virtualized compute which is abstracted away from operating systems using 

container packaged runtime environment including libraries and applications, Containers don’t have dedicated operating 

system. Containers communicate with the operating systems kernel, as such hey inherit a series of process management and 

security functions 

 Function as a Service (FaaS) , which is a lightweight, event-based, asynchronous compute solution that allows creating and 

running small single-purpose functions that can be instantiated within the cloud without the need to instantiate a server or a 

runtime environment. 

 Jobs (cloud runs) that are stateless containers invoked via HTTPS requests.  Jobs can run on top of CaaS or simply abstracted 

within the provider’s cloud environment, such as Google Cloud Run.  Sometimes these jobs or runs are called Jobs as a Service 

(JaaS). 

The “Cloud-Native” concept emerged within the last 4 years and is characteristic to service or applications that can leverage 

properties and interfaces offered by cloud computing providers or frameworks, but their code packaging libraries are independent 

from the cloud provider platforms.  Cloud native applications leverage elements from the “The Twelve-Factor App” definitions 

(https://12factor.net) which promotes concepts for optimal design and deployment in the cloud environment such as declarative 

formats for setup automation, clean contract with operating system / cloud provider, continuous build and deployment and 

minimum difference between development and production environments.  While many of the concepts of cloud computing 

implementations are similar, cloud service providers implemented in their cloud environment many proprietary technologies and 

solution. These proprietary technologies impacted Big Data, Machine Learning, AI, DevOps and other cloud services areas, making 

very difficult to migrate machine learning applications between cloud providers, as well as between on-premise solutions and cloud 

providers.  The Cloud Native Computing Foundation (CNCF) was established as part of the nonprofit Linux Foundation to 

promote open source software that is cloud agnostic and can be practically deployed to any public cloud of choice without major 

modifications and re-engineering effort. “CNCF serves as the vendor-neutral home for many of the fastest-growing open source 

projects, including Kubernetes, Prometheus and Containerd” (cncf.io main page) 

Microservices, also referred to as Microservice Architecture, represent an architectural style that provides framing for applications 

as a structured collection of REST-based services, with the following main properties: 

 Easy maintainable and testable 

 Independently deployable 

 Loosely coupled 

 Organized around business capabilities and functions 

 Owned by small teams 

In dept description and references for microservices are available at https://microservices.io 

V. DESIGN PATTERNS AND FRAMEWORK 

Design patterns present good practice solutions to frequently occurring problems in Information technology (IT) and Computer 

Science (CS) solutions design, such as for example object-oriented software patterns, machine learning patterns and others.  Their 

correct application in a solutions design may significantly improve its quality and usability attributes such as ability to reproduce, 

maintain, scale, accelerate as computation and other attributes.  According to Steven Bradley in [1], design patterns, design 

components, and design frameworks are concepts related to each other. Within this chapter, I will refer to them simply just as 

https://12factor.net/
https://microservices.io/
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patterns, components and frameworks. These three entities help software developers and software engineers developing and 

implementing modular design, reuse code and machine learning artifacts, implement built-in flexibility and separation of functions 

or services.  Patterns are abstract solutions that have been observed to work for specific tangible problems. They capture common 

characteristics of similar problems, describe solution elements used, including pros, cons and potential resulting implications. 

Collecting and organizing representative patterns to a common problem, can lead to a pattern library or pattern catalog. Frequently 

pattern language and//or component libraries (example stored in Github.com repos) can emerge as well.   

Components represent the actual implementations of design patterns. Components provide artifacts, such as code we can reuse in 

future similar projects. Components should be flexible to enable adoption and adaptation, including patterns-based mechanisms for 

their modification. There can be multiple components for a single design pattern, as there can be multiple solutions to a problem. 

 

Frameworks combine components, design patterns and package them together following some kind of services-based design, such 

as Services Oriented Architecture (SOA), Micro Services Architecture or others. 
 

Framework =  Components +  Design Patterns 
  

Frameworks support tools and application programming interfaces (APIs) that connect its instantiated components. By nature, 

frameworks tend to be more specialized. 

 

In general, comparing patterns with frameworks, the following differences can be observed: 

 Patterns are more abstract and less specialized than frameworks. 

 Patterns represent smaller and more abstracted architectural elements than frameworks. 

 

There are four (4) essential attributes for design patterns, as they emerged over the years: 

 Name - defines how we will reference it 

 Problem — defines the problem, including context and when the patterns is applicable.  It also includes requirements and 

constraints 

 Solution — specifies the elements of the pattern, including their relationships, function, and interactions. 

 Implications (consequences) – these result from trade-offs in using this pattern. This is critical for evaluating design 

alternatives. It is good practice to add here pros and cons as well, which help better describe the implications. 

VI. ACCELERATING COMPUTATION USING GPUS 

Since the evolution of the Graphical Processing Units (GPU), there were an overwhelming number of studies published about their 

use to accelerate computation for machine learning and deep learning workloads.  Kamil Aida-zade at al. within [3] compared 

running deep neural networks on GPU and CPU-based frameworks trained using the MNIST dataset. They leveraged CUDA 

(Compute Unified Device Architecture) parallel computing technology developed by introduced by NVIDIA Inc, which is dominant 

in the industry using GPUs for computation. The authors clearly demonstrated that GPU based deep learning frameworks are 

computationally multiple times more effective and faster compared to CPU technology.  Youngrang Kim at al. in [4] investigated 

building Large-scale Deep Learning Framework based on Heterogeneous Multi-GPU Cluster, taking advantage of parallel GPU-

based computing using multiple GPU worker nodes. The authors evaluated various distributed deep-learning scenarios, distributed 

within a Tensorflow based machine learning framework. The study demonstrated the efficiency of parallelizing workload across 

four different GPU systems, even when heterogeneous by nature.  Eun-Ji Lim at al. in [5] proposed a Shared Memory based 

framework for Fast Deep Neural Network Training, where multiple deep learning workers shared training parameters (“weights”) 

using remote shared memory (RSM). 

VII. CONTAINERIZED WORKLOADS FOR MACHINE LEARNING   

Pengfei Xu at al. in [6] analyzed the feasibility of running deep learning workloads in Docker containers and performed a series of 

tests and evaluation regarding tools and technology performance and scalability. The authors concluded that deploying deep 

learning technology into docker containers is feasible and can benefit overall solution due to its flexibility, lightweight, and resource 

isolation abilities. Different deep learning software or different versions of the same software can coexist one the same systems yet 

enabling multi-tenant use and good performance. 

 

Rupesh Raj Karn at al. in [7] has experimented with a Cloud DevOps type solution for ML using containerize infrastructure to 

enable easy parallelization, on-demand deployment of components and flexible scaling. Their study covered multiple use cases 

implemented on container scheduler:  

 Matching a single optimized model to a given context in a dynamic environment. 

 Creating and building multiple models and selecting the best for a given context. 

 Closed loop, auto-selection mechanism in the cloud DevOps environment. 
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 Using unsupervised clustering to segment dataset ahead of supervised classification. 

 End-to-end comparison with Ensemble Machine Learning (EML), where different data subsets are drawn from the training set 

and each training subset is used to train a different classifier. 

 DL implementation and its hyperparameters tuning. 

 

 
Figure 1. Containerized DevOps architecture for ML. 

 

VIII. OVERVIEW OF MACHINE LEARNING PRACTICES 

Machine Learning (ML) represents a set of practices and techniques that use algorithms and statistics to learn from data and make 

predictions that are good enough to be useful. ML enables computers to learn automatically without human intervention and 

generate outputs or actions based on algorithmic data analysis and inference performed. 

 

Machine Learning algorithms can be categorized as follows: 

 Supervised Learning, trains ML model using pre-labeled data, where the correct classes or outcome values and given. The 

predicted classes or values to be predicted are known and well defined from the beginning. 

 Unsupervised machine learning algorithms work use data that is neither classified nor labeled. Unsupervised ML models infer 

a function to describe a hidden structure from unlabeled data.  

 Reinforcement machine learning algorithms interacts with its environment to discover errors or rewards and take subsequent 

actions.   Trial and error search and delayed reward are the most relevant characteristics of reinforcement learning. This method 

allows machines and software agents to automatically determine the ideal behavior within a specific context in order to 

maximize its performance. Simple reward feedback is required for the agent to learn which action is best; this is known as the 

reinforcement signal. 

 Ensemble learning combines multiple ML models is the process by which multiple algorithms and resulting models, such as 

classification, prediction, function approximation and others, to solve a particular machine intelligence problem 

IX. PATTERN RECOGNITION IN CONTEXT OF ML   

Patterns are using Machine Learning algorithm to recognize patterns in the data. It focuses on classifying data based on knowledge 

already gained or on statistical information extracted from patterns. Pattern recognition discover data arrangements and hidden 

structures that yield information about a given system or data set.  

Pattern recognition algorithms when used in prediction can identify statistically probable movements of time series or other type of 

data into the future. Their main characteristics are: 

 Pattern recognition relies on data to derive outcomes and train models  

 Pattern recognition systems must recognize patterns quickly and accurate, as well as classify unfamiliar entities with unknown 

applicable patterns quickly 

 Identify patterns and entities using partially available and/or hidden data.  

X. MACHINE LEARNING ARCHITECTURE AS MICROERVICES 

Machine Learning solutions incorporate multiple functional building blocks, including data acquisition, data splitting into testing 

and training datasets, model building, model testing and finally model serving, s presented within the figure below. 
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Figure 2. High-level architecture of a machine learning solution. 

 

A Microservices style architecture places functional building blocks of a ML system into individual service components, which can 

be built, deployed, and scaled individually.  Each component implements a standalone machine learning function and is 

implemented as a distinct virtual infrastructure compute component, such as a container of server-less function. Machine Learning 

Microservices (MLMs) are small, autonomous services that communicate between each other using REST APIs. The Figure below 

depicts a conceptual MLM design template for a Machine Learning Project. 

 

 
Figure 3. Conceptual MLM design for machine learning projects. 

XI. PROPOSED FRAMEWORK FOR MLM PATTERNS AND PRACTICES 

This paper is proposing the following high-level framework for MLM type solutions, which is broken up into three distinct 

categories of components: 

 Data collection and data management components 

 ML/DL models training and testing components 

 Model serving components 

 
 

Figure 4. High-Level Architecture ML Components. 

 

A generic architecture for data collection and management components is presented below: 
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Figure 5. MLM architecture for data processing. 

 

A generic MLM architecture for model training and testing leverages container images, deployable to Docker Swarm or 

Kubernetes platform. We packaged Talos enabled hyperparameter optimization as microservices, together with Keras, 

Tensorflow or Pytorch, as well as MongoDB and HDF5Lib containers for models and their weights persistence. 

 

 
 

Figure 6. MLM architecture for models training and testing. 

 

Model serving is frequently implemented as a microservice using container type deployment, as well as serverless deployment, 

publishing the microservice as function as a service (FaaS). We have experimented with serverless infrastructure using the 

OpenFaaS project (openfaas.com) and single node Kubernetes environment (minikube.sigs.k8s.io). 

 
Figure: 7. MLM architecture for model serving. 

XII. ALGORITHMS AND FRAMEWORKS WE USED MLM WITH 

We evaluated the MLM concept, including selective implementation and testing for the following ML frameworks: 

 SciKit-Learn (scikit-learn.org) 

 Keras and Tensorflow (keras.io, tensorflow.org) 

 Rapids-AI project (rapids.ai) and its machine learning library CuML (github.com/rapidsai/cuml) 

 Machine Learning algorithms augmented with Quantum Computing (QML algorithms), such as for example: 

o  QSVM from IBM Qiskit SDK (github.com/qiskit/aqua/algorithms). 

o QKMeans example from https://github.com/enniogit/Quantum_K-means 

Below are sample supervised learning algorithms considered. 

Scikit-Learn: Support Vector Machines 
 Classification: from sklearn import svm;  model = svm.SVC() 

 Regression: from sklearn import svm;  model = svm.SVR() 

 

Scikit-Learn: Stochastic Gradient Descent 
 Classification: from sklearn.linear_model import SGDClassifier 

 Regression: from sklearn.linear_model import SGDRegressor 

 

Scikit-Learn: Nearest Neighbors 
 Classification: from sklearn import neighbors; model = neighbors.KNeighborsClassifier() 

 Regression: from sklearn import neighbors; model =neighbors.KNeighborsRegressor() 

 

Keras 
 Classification: from keras.wrappers.scikit_learn import KerasRegressor 
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 Regression: from keras.wrappers.scikit_learn import KerasRegressor 

 

Nvidia: CuML 
 Classification:  

o from cuml import svm; model = svm.SVC() 

 Regression:  

o from cuml import LinearRegression 

o from cuml import LogisticRegression 

 

QML: 

 Classification: from qiskit.aqua.algorithms import QSVM 

XIII. SAMPLE PATTERN DEFNITION: MLM MODEL TRAINING 

 Pattern Name: “Machine Learning Model Training” 

 Pattern ID: MOD-TRAIN-001 

 Also Known As: “Model training using various frameworks and algorithms as Microservice” 

 Problem – Implementing machine learning environment SW stack, that integrates with Python libraries, GPU drivers, scales 

as single or multiple nodes is not a simple task to accomplish. Having all this enabled as a Microservices, that is easy deployable 

as container or callable as a function makes developers and students life much easier. 

 Purpose (Intent): Implement a Microservice that takes a generic Python script or Jupyter Notebook and creates a function for 

it.  The function will require as input pointer to training and test data, the loss function and the model name that will be saved 

and stored. For deep learning models training, may have to specify parameters for defining the neural network. 

 Motivation (Forces): We need an easy, API based way to train model, available to developers or students with limited 

knowledge about machine learning and associated tooling. 

 Applicability: This pattern is applicable for various deep learning networks. Requirements are ability to use various python 

libraries, input code based on Jupyter notebook or python program, use CPU or GPU based computation.  In case of Quantum 

Neural Networks, the backend would be a Quantum simulator, or an IBM Quantum computer accessed as a Microservices 

using Qiskit or other Open Source SDK. 

 Structure: The proposed structure for the Microservice Pattern is based on an initial Jupyter Notebook, that is converted into 

a microservice. Input parameters must be sent to the notebook, as such as initial step need to parameterize the notebook. 

  

 
 

Figure 8. Generic Structure Model Training as a Service. 

 

 Participants: The following entities participate within this pattern: Jupyter Notebook, Python Libraries, Papermill product, 

Github packages (Kernel-Gateway, OpenFaaS), Docker Registry Server: Private Registry or DockerHub. 

 Consequences:  

 The user will have no direct access to Jupyter; rather via API and sending input parameters 

 Training and Test data must be prepared to Github Repo or some kind of Cloud Storage 

 Implementation (solution, may include diagram):  

 Pattern deployed as Container; local system or cloud. 

 Pattern deployed as Function; Kubernetes in the cloud. 

 Known Uses: This pattern can work with multiple machine learning frameworks, Scikit-Learn (extended via MlXtend), 

Apache Spark, Keras (uses Tensorflow or Pytorch), Nvidia CuML, experimental QML prototypes. 

XIV. SAMPLE PATTERN DEFNITION: MLM DATA ACQUISITION 

 Pattern Name: “Data Acquisition for Machine Learning” 

 Pattern ID: DATA-AC-001 

 Also Known As: “Data Acquisition using Open Source Collectors as Microservices” 

 Problem – There are many different data sources, accessible via different protocols and using multiple authentication 

mechanisms. Diversified set of data collector capabilities and practices are required to work with these sources of data. Once 

data is acquired, additional data augmentation is manipulation is required, which should be performed at acquisition stage. 



8 

 

 Purpose (Intent): Define simple, easy to deploy, use and scale pattern that can handle most of data collection and processing 

needs. Data acquisition will have its own mini-framework of connectors (input, out-put, fan-in, fan-out, conditional, etc.) and 

processors. 

 Motivation (Forces): Common data Acquisition components and practices are needed to implement this pattern to address 

broad scale and diversified data acquisition requirements. 

 Applicability: Applicable to practically all Big Data and traditional relational databases type data sources.  It is also 

applicable to large number of public cloud middleware, such as Google Big Table Aws S3, others. 

 Structure: The proposed structure for the Data Collector is using one or multiple Microservices. In general, the data 

collector is deployed as one single microservice (typically as a container), with multiple staging libraries: one staging library 

for each of the modules within the figure, such as for input, output, processor and others. 

 
Figure 9. Generic Structure for a Data Collector. 

 Participants: The following entities participate within this pattern: 

 Data source: Big Data Middleware, remote API, Database, web page, etc. 

 Target staging area, such as for example: Github, filesystem, cloud storage 

 Data collector itself, such as for example Apache NiFi or others 

 Consequences:  

 Data is acquired and processed by this pattern 

 Proper authentication and authorization required to collect the data 

 Data during transfer will have to be encrypted (encryption in motion) 

 The microservice must be protected, including associated APIs 

 Implementation (solution, may include diagram):  

 The recommended implementation is using Docker containers, with selectively added staging libraries to the Docker 

image. 

 The container can be deployed for continuous operation or as a job. 

 Deployment as a function is possible but recommended for simple data acquisition tasks, such as using APIs and with 

lightweight data processing. 

 Known Uses: This pattern incorporates several data acquisition and integration use cases. Few examples: 

 Automated data acquisition, parsing, formatting and storage to MySQL. 

 Cloud solution with Google DataFlow. 

 On-premise solution using Apache Nifi. 

 Implementing foreign keys and subsequent joins between multiple data source (MySQL tables). 

 Enrich the data using formulas and new fields. 
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